5. Bài 9: Căn bậc ba

Đề bài

Câu 1 :

Khẳng định nào sau đây là đúng?

  • A.

    $\sqrt[3]{a} = x \Leftrightarrow {a^3} = x$            

  • B.

    $\sqrt[3]{a} =  – x \Leftrightarrow {a^3} =  – x$

  • C.

    $\sqrt[3]{a} = x \Leftrightarrow a = {x^3}$

  • D.

    $\sqrt[3]{a} =  – x \Leftrightarrow a = {x^3}$

Câu 2 :

Khẳng định nào sau đây là đúng?

  • A.

    $\sqrt[3]{a} > \sqrt[3]{b} \Leftrightarrow a > b$

  • B.

    $\sqrt[3]{a} > \sqrt[3]{b} \Leftrightarrow a < b$

  • C.

    $\sqrt[3]{a} \ge \sqrt[3]{b} \Leftrightarrow a = b$

  • D.

    $\sqrt[3]{a} < \sqrt[3]{b} \Leftrightarrow a > b$

Câu 3 :

Khẳng định nào sau đây là sai?

  • A.

    $\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[3]{{ab}}$

  • B.

    $\sqrt[3]{{\dfrac{a}{b}}} = \dfrac{{\sqrt[3]{a}}}{{\sqrt[3]{b}}}$ với $b \ne 0$

  • C.

    ${\left( {\sqrt[3]{a}} \right)^3} = a$

  • D.

    $\sqrt[3]{{{a^3}}} = \left| a \right|$

Câu 4 :

Chọn khẳng định đúng

  • A.

    $\sqrt[3]{{27}} = 9$

  • B.

    $\sqrt[3]{{27}} = 3$

  • C.

    $\sqrt[3]{{27}} =  – 3$

  • D.

    $\sqrt[3]{{27}} =  – 9$

Câu 5 :

Chọn khẳng định đúng, với $a \ne 0$ ta có

  • A.

    $\sqrt[3]{{ – \dfrac{1}{{8{a^3}}}}} = -\dfrac{1}{2a}$

  • B.

    $\sqrt[3]{{ – \dfrac{1}{{8{a^3}}}}} = \dfrac{1}{2a}$

  • C.

    $\sqrt[3]{{ – \dfrac{1}{{8{a^3}}}}} = \dfrac{1}{4a}$

  • D.

    $\sqrt[3]{{ – \dfrac{1}{{8{a^3}}}}} = -\dfrac{1}{2a^2}$

Câu 6 :

Rút gọn biểu thức \(\sqrt[3]{{\dfrac{{ – 27}}{{512}}{a^3}}} + \sqrt[3]{{64{a^3}}} – \dfrac{1}{3}\sqrt[3]{{1000{a^3}}}\) ta được

  • A.

    $\dfrac{{7a}}{{24}}$

  • B.

    $\dfrac{{5a}}{{24}}$

  • C.

    $\dfrac{{7a}}{8}$

  • D.

    $\dfrac{{5a}}{8}$

Câu 7 :

Rút gọn biểu thức $B = \sqrt[3]{{17\sqrt 5  + 38}} – \sqrt[3]{{17\sqrt 5  – 38}}$ ta được

  • A.

    $4$

  • B.

    $\sqrt 5 $

  • C.

    $2\sqrt 5 $

  • D.

    $2$

Câu 8 :

Cho $A = 2\sqrt[3]{3}$ và $B = \sqrt[3]{{25}}$. Chọn khẳng định đúng.

  • A.

    $A < B$

  • B.

    $A > B$

  • C.

    $A \ge B$

  • D.

    $A + B = 0$

Câu 9 :

Tìm $x$ biết $\sqrt[3]{{2x + 1}} >  – 3$.

  • A.

    $x =  – 14$

  • B.

    $x <  – 14$ 

  • C.

    $x >  – 14$

  • D.

    $x >  – 12$

Câu 10 :

Tìm số nguyên nhỏ nhất thỏa mãn bất phương trình  $\sqrt[3]{{3 – 2x}} \le 4$.

  • A.

    $x =  – 31$

  • B.

    $x =  – 30$

  • C.

    $x =  – 32$

  • D.

    $x =  – 29$

Câu 11 :

Thu gọn biểu thức  $\sqrt[3]{{\dfrac{{343{a^3}{b^6}}}{{ – 125}}}}$ ta được

  • A.

    $\dfrac{{ – 7a{b^2}}}{5}$

  • B.

    $\dfrac{{7a{b^2}}}{5}$

  • C.

    $ – \dfrac{{a{b^2}}}{5}$

  • D.

    $\dfrac{{a{b^2}}}{5}$

Câu 12 :

Số nghiệm của phương trình  $\sqrt[3]{{2x + 1}} = 3$ là

  • A.

    $2$

  • B.

    $0$

  • C.

    $1$

  • D.

    $3$

Câu 13 :

Kết luận nào đúng khi nói về nghiệm của phương trình  $\sqrt[3]{{3x – 2}} =  – 2$

  • A.

    Là số nguyên âm

  • B.

    Là phân số

  • C.

    Là số vô tỉ

  • D.

    Là số nguyên dương

Câu 14 :

Số nghiệm của phương trình  $\sqrt[3]{{5 + x}} – x = 5$ là

  • A.

    $2$

  • B.

    $0$

  • C.

    $1$

  • D.

    $3$

Câu 15 :

Tổng các nghiệm của phương trình  \(\sqrt[3]{{12 – 2x}} + \sqrt[3]{{23 + 2x}} = 5\) là

  • A.

    $2$

  • B.

    $\dfrac{1}{2}$

  • C.

    $ – \dfrac{11}{2}$

  • D.

    $\dfrac{19}{2}$

Câu 16 :

Thu gọn biểu thức  $\sqrt[3]{{{x^3} + 3{x^2} + 3x + 1}} – \sqrt[3]{{8{x^3} + 12{x^2} + 6x + 1}}$ ta được 

  • A.

    $x$

  • B.

    $ – x$

  • C.

    $2x$

  • D.

    $ – 2x$

Câu 17 :

Tính \(A = \,\sqrt[3]{{2 + 10\sqrt {\dfrac{1}{{27}}} }}\, + \,\sqrt[3]{{2 – 10\sqrt {\dfrac{1}{{27}}} }}\)

  • A.
     \(A = 2\).
  • B.
     \(A = 1\).
  • C.
     \(A = 5\).
  • D.
     \(A = 8\).

Lời giải và đáp án

Câu 1 :

Khẳng định nào sau đây là đúng?

  • A.

    $\sqrt[3]{a} = x \Leftrightarrow {a^3} = x$            

  • B.

    $\sqrt[3]{a} =  – x \Leftrightarrow {a^3} =  – x$

  • C.

    $\sqrt[3]{a} = x \Leftrightarrow a = {x^3}$

  • D.

    $\sqrt[3]{a} =  – x \Leftrightarrow a = {x^3}$

Đáp án : C

Lời giải chi tiết :

Với $a$ ta có $\sqrt[3]{a} = x \Leftrightarrow a = {x^3}$

Và $\sqrt[3]{a} =  – x \Leftrightarrow a = {\left( { – x} \right)^3} \Leftrightarrow a =  – {x^3}$

Câu 2 :

Khẳng định nào sau đây là đúng?

  • A.

    $\sqrt[3]{a} > \sqrt[3]{b} \Leftrightarrow a > b$

  • B.

    $\sqrt[3]{a} > \sqrt[3]{b} \Leftrightarrow a < b$

  • C.

    $\sqrt[3]{a} \ge \sqrt[3]{b} \Leftrightarrow a = b$

  • D.

    $\sqrt[3]{a} < \sqrt[3]{b} \Leftrightarrow a > b$

Đáp án : A

Lời giải chi tiết :

Với mọi $a,b$ ta có $\sqrt[3]{a} > \sqrt[3]{b} \Leftrightarrow a > b$

Câu 3 :

Khẳng định nào sau đây là sai?

  • A.

    $\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[3]{{ab}}$

  • B.

    $\sqrt[3]{{\dfrac{a}{b}}} = \dfrac{{\sqrt[3]{a}}}{{\sqrt[3]{b}}}$ với $b \ne 0$

  • C.

    ${\left( {\sqrt[3]{a}} \right)^3} = a$

  • D.

    $\sqrt[3]{{{a^3}}} = \left| a \right|$

Đáp án : D

Lời giải chi tiết :

+) $\sqrt[3]{{ab}} = \sqrt[3]{a}.\sqrt[3]{b}$

+) Với $b \ne 0$, ta có $\sqrt[3]{{\dfrac{a}{b}}} = \dfrac{{\sqrt[3]{a}}}{{\sqrt[3]{b}}}$.

+)${\left( {\sqrt[3]{a}} \right)^3} = \sqrt[3]{{{a^3}}} = a$

Câu 4 :

Chọn khẳng định đúng

  • A.

    $\sqrt[3]{{27}} = 9$

  • B.

    $\sqrt[3]{{27}} = 3$

  • C.

    $\sqrt[3]{{27}} =  – 3$

  • D.

    $\sqrt[3]{{27}} =  – 9$

Đáp án : B

Phương pháp giải :

Sử dụng công thức $\sqrt[3]{{{a^3}}} = a$

Lời giải chi tiết :

Ta có $\sqrt[3]{{27}} = \sqrt[3]{{{3^3}}} = 3$.

Câu 5 :

Chọn khẳng định đúng, với $a \ne 0$ ta có

  • A.

    $\sqrt[3]{{ – \dfrac{1}{{8{a^3}}}}} = -\dfrac{1}{2a}$

  • B.

    $\sqrt[3]{{ – \dfrac{1}{{8{a^3}}}}} = \dfrac{1}{2a}$

  • C.

    $\sqrt[3]{{ – \dfrac{1}{{8{a^3}}}}} = \dfrac{1}{4a}$

  • D.

    $\sqrt[3]{{ – \dfrac{1}{{8{a^3}}}}} = -\dfrac{1}{2a^2}$

Đáp án : A

Phương pháp giải :

Sử dụng định công thức $\sqrt[3]{{{a^3}}} = a$

Lời giải chi tiết :

Ta có $\sqrt[3]{{ – \dfrac{1}{{8{a^3}}}}} = \sqrt[3]{{{{\left( { – \dfrac{1}{{2a}}} \right)}^3}}} =  – \dfrac{1}{{2a}}$

Câu 6 :

Rút gọn biểu thức \(\sqrt[3]{{\dfrac{{ – 27}}{{512}}{a^3}}} + \sqrt[3]{{64{a^3}}} – \dfrac{1}{3}\sqrt[3]{{1000{a^3}}}\) ta được

  • A.

    $\dfrac{{7a}}{{24}}$

  • B.

    $\dfrac{{5a}}{{24}}$

  • C.

    $\dfrac{{7a}}{8}$

  • D.

    $\dfrac{{5a}}{8}$

Đáp án : A

Phương pháp giải :

Sử dụng công thức $\sqrt[3]{{{a^3}}} = a$ sau đó cộng trừ các số hạng

Lời giải chi tiết :

Ta có \(\sqrt[3]{{\dfrac{{ – 27}}{{512}}{a^3}}} + \sqrt[3]{{64{a^3}}} – \dfrac{1}{3}\sqrt[3]{{1000{a^3}}}\)$ = \sqrt[3]{{{{\left( { – \dfrac{3}{8}a} \right)}^3}}} + \sqrt[3]{{{{\left( {4a} \right)}^3}}} – \dfrac{1}{3}\sqrt[3]{{{{\left( {10a} \right)}^3}}}$

$ = \dfrac{{ – 3}}{8}a + 4a – \dfrac{{10}}{3}a = \dfrac{{7a}}{{24}}$.

Câu 7 :

Rút gọn biểu thức $B = \sqrt[3]{{17\sqrt 5  + 38}} – \sqrt[3]{{17\sqrt 5  – 38}}$ ta được

  • A.

    $4$

  • B.

    $\sqrt 5 $

  • C.

    $2\sqrt 5 $

  • D.

    $2$

Đáp án : A

Phương pháp giải :

– Đưa biểu thức dưới dấu căn về hằng đẳng thức ${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$;${\left( {a – b} \right)^3} = {a^3} – 3{a^2}b + 3a{b^2} – {b^3}$.

– Sử dụng định công thức $\sqrt[3]{{{a^3}}} = a$ sau đó cộng trừ các số hạng

Lời giải chi tiết :

Ta có $B = \sqrt[3]{{17\sqrt 5  + 38}} – \sqrt[3]{{17\sqrt 5  – 38}}$

$ = \sqrt[3]{{{2^3} + {{3.2}^2}.\sqrt 5  + 3.2.{{\left( {\sqrt 5 } \right)}^2} + {{\left( {\sqrt 5 } \right)}^3}}} – \sqrt[3]{{{{\left( {\sqrt 5 } \right)}^3} – 3.{{\left( {\sqrt 5 } \right)}^2}.2 + 3.\sqrt 5 {{.2}^2} – {2^3}}}$.

$ = \sqrt[3]{{{{\left( {2 + \sqrt 5 } \right)}^3}}} – \sqrt[3]{{{{\left( {\sqrt 5  – 2} \right)}^3}}} = \sqrt 5  + 2 – \sqrt 5  + 2 = 4 $

Câu 8 :

Cho $A = 2\sqrt[3]{3}$ và $B = \sqrt[3]{{25}}$. Chọn khẳng định đúng.

  • A.

    $A < B$

  • B.

    $A > B$

  • C.

    $A \ge B$

  • D.

    $A + B = 0$

Đáp án : A

Phương pháp giải :

– Sử dụng công thức $\sqrt[3]{a}.\sqrt[3]{b} = \sqrt[3]{{ab}}$.

– So sánh hai căn bậc hai theo $a < b \Leftrightarrow \sqrt[3]{a} < \sqrt[3]{b}$

Lời giải chi tiết :

Ta có $A = 2\sqrt[3]{3} = \sqrt[3]{8}.\sqrt[3]{3} = \sqrt[3]{{24}}$ .

Vì $24 < 25 \Leftrightarrow \sqrt[3]{{24}} < \sqrt[3]{{25}} \Rightarrow 2\sqrt[3]{3} < \sqrt[3]{{25}}$ hay $A < B$

Câu 9 :

Tìm $x$ biết $\sqrt[3]{{2x + 1}} >  – 3$.

  • A.

    $x =  – 14$

  • B.

    $x <  – 14$ 

  • C.

    $x >  – 14$

  • D.

    $x >  – 12$

Đáp án : C

Phương pháp giải :

– Áp dụng $\sqrt[3]{a} > b \Leftrightarrow a > {b^3}$

Lời giải chi tiết :

Ta có $\sqrt[3]{{2x + 1}} >  – 3 $

$\Leftrightarrow 2x + 1 > {\left( { – 3} \right)^3} $

$\Leftrightarrow 2x + 1 >  – 27 $

$\Leftrightarrow 2x >  – 28 $

$\Leftrightarrow x >  – 14$.

Câu 10 :

Tìm số nguyên nhỏ nhất thỏa mãn bất phương trình  $\sqrt[3]{{3 – 2x}} \le 4$.

  • A.

    $x =  – 31$

  • B.

    $x =  – 30$

  • C.

    $x =  – 32$

  • D.

    $x =  – 29$

Đáp án : B

Phương pháp giải :

– Áp dụng $\sqrt[3]{a} \le b \Leftrightarrow a \le {b^3}$

Lời giải chi tiết :

Ta có $\sqrt[3]{{3 – 2x}} \le 4 \Leftrightarrow 3 – 2x \le {4^3}$

$ \Leftrightarrow 3 – 2x \le 64$ $\Leftrightarrow 2x \ge  – 61$

$\Leftrightarrow x \ge  – \dfrac{{61}}{2}$.

Nên số nguyên nhỏ nhất thỏa mãn bất phương trình trên là $ – 30$.

Câu 11 :

Thu gọn biểu thức  $\sqrt[3]{{\dfrac{{343{a^3}{b^6}}}{{ – 125}}}}$ ta được

  • A.

    $\dfrac{{ – 7a{b^2}}}{5}$

  • B.

    $\dfrac{{7a{b^2}}}{5}$

  • C.

    $ – \dfrac{{a{b^2}}}{5}$

  • D.

    $\dfrac{{a{b^2}}}{5}$

Đáp án : A

Phương pháp giải :

– Áp dụng $\sqrt[3]{{{a^3}}} = a$

Lời giải chi tiết :

Ta có $\sqrt[3]{{\dfrac{{343{a^3}{b^6}}}{{ – 125}}}}$$ = \sqrt[3]{{{{\left( {\dfrac{{7a{b^2}}}{{ – 5}}} \right)}^3}}} =  – \dfrac{{7a{b^2}}}{5}$.

Câu 12 :

Số nghiệm của phương trình  $\sqrt[3]{{2x + 1}} = 3$ là

  • A.

    $2$

  • B.

    $0$

  • C.

    $1$

  • D.

    $3$

Đáp án : C

Phương pháp giải :

– Áp dụng $\sqrt[3]{x} = a \Leftrightarrow x = {a^3}$

Lời giải chi tiết :

Ta có $\sqrt[3]{{2x + 1}} = 3 \Leftrightarrow 2x + 1 = {3^3} $

$\Leftrightarrow 2x + 1 = 27 \Leftrightarrow 2x = 26 $

$\Leftrightarrow x = 13$.

Vậy phương trình đã cho có 1 nghiệm là \(x=13.\)

Câu 13 :

Kết luận nào đúng khi nói về nghiệm của phương trình  $\sqrt[3]{{3x – 2}} =  – 2$

  • A.

    Là số nguyên âm

  • B.

    Là phân số

  • C.

    Là số vô tỉ

  • D.

    Là số nguyên dương

Đáp án : A

Phương pháp giải :

– Áp dụng $\sqrt[3]{x} = a \Leftrightarrow x = {a^3}$

Lời giải chi tiết :

Ta có $\sqrt[3]{{3x – 2}} =  – 2$$ \Leftrightarrow 3x – 2 = {\left( { – 2} \right)^3} \Leftrightarrow 3x – 2 =  – 8 \Leftrightarrow 3x =  – 6 \Leftrightarrow x =  – 2$.

Câu 14 :

Số nghiệm của phương trình  $\sqrt[3]{{5 + x}} – x = 5$ là

  • A.

    $2$

  • B.

    $0$

  • C.

    $1$

  • D.

    $3$

Đáp án : D

Phương pháp giải :

– Áp dụng $\sqrt[3]{x} = a \Leftrightarrow x = {a^3}$

Lời giải chi tiết :

Ta có $\sqrt[3]{{5 + x}} – x = 5 \Leftrightarrow \sqrt[3]{{x + 5}} = x + 5$$ \Leftrightarrow x + 5 = {\left( {x + 5} \right)^3} \Leftrightarrow {\left( {x + 5} \right)^3} – \left( {x + 5} \right) = 0$

$ \Leftrightarrow \left( {x + 5} \right)\left[ {{{\left( {x + 5} \right)}^2} – 1} \right] = 0$$ \Leftrightarrow \left( {x + 5} \right)\left( {x + 5 – 1} \right)\left( {x + 5 + 1} \right) = 0$$ \Leftrightarrow \left( {x + 5} \right)\left( {x + 4} \right)\left( {x + 6} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x =  – 5\\x =  – 4\\x =  – 6\end{array} \right.$

Vậy phương trình có ba nghiệm phân biệt 

Câu 15 :

Tổng các nghiệm của phương trình  \(\sqrt[3]{{12 – 2x}} + \sqrt[3]{{23 + 2x}} = 5\) là

  • A.

    $2$

  • B.

    $\dfrac{1}{2}$

  • C.

    $ – \dfrac{11}{2}$

  • D.

    $\dfrac{19}{2}$

Đáp án : C

Phương pháp giải :

– Áp dụng $\sqrt[3]{x} + \sqrt[3]{y} = {\left( {\sqrt[3]{x} + \sqrt[3]{y}} \right)^3} = x + y + 3\sqrt[3]{{xy}}\left( {\sqrt x  + \sqrt y } \right)$

-Lập phương hai vế, sau đó biến đổi để đưa về dạng cơ bản $\sqrt[3]{x} = a \Leftrightarrow x = {a^3}$

Lời giải chi tiết :

Ta có \(\sqrt[3]{{12 – 2x}} + \sqrt[3]{{23 + 2x}} = 5\)$ \Leftrightarrow {\left( {\sqrt[3]{{12 – 2x}} + \sqrt[3]{{23 + 2x}}} \right)^3} = {5^3}$

$ \Leftrightarrow 12 – 2x + 3\sqrt[3]{{\left( {12 – 2x} \right)\left( {23 + 2x} \right)}}\left( {\sqrt[3]{{12 – 2x}} + \sqrt[3]{{23 + 2x}}} \right) + 23 + 2x = 125$

Mà \(\sqrt[3]{{12 – 2x}} + \sqrt[3]{{23 + 2x}} = 5\)

nên ta có phương trình

$ \Leftrightarrow 3.\sqrt[3]{{\left( {12 – 2x} \right)\left( {23 + 2x} \right)}}.5 + 35 = 125$

$\Leftrightarrow \sqrt[3]{{\left( {12 – 2x} \right)\left( {23 + 2x} \right)}} = 6$

$ \Leftrightarrow \left( {12 – 2x} \right)\left( {23 + 2x} \right)= 216 $

$\Leftrightarrow  – 4{x^2} – 22x + 60 = 0 $

$\Leftrightarrow 2{x^2} + 11x – 30 = 0$

$ \Leftrightarrow 2{x^2} – 4x + 15x – 30 = 0 $

$\Leftrightarrow 2x\left( {x – 2} \right) + 15\left( {x – 2} \right)= 0$

$ \Leftrightarrow \left( {2x + 15} \right)\left( {x – 2} \right) = 0$

$ \Leftrightarrow \left[ \begin{array}{l}x =  – \dfrac{15}{2}\\x = 2\end{array} \right.$

Nên tổng các nghiệm của phương trình là

$2 + \left( { – \dfrac{15}{2}} \right) = \dfrac{{ – 11}}{2}$.

Câu 16 :

Thu gọn biểu thức  $\sqrt[3]{{{x^3} + 3{x^2} + 3x + 1}} – \sqrt[3]{{8{x^3} + 12{x^2} + 6x + 1}}$ ta được 

  • A.

    $x$

  • B.

    $ – x$

  • C.

    $2x$

  • D.

    $ – 2x$

Đáp án : B

Phương pháp giải :

– Đưa biểu thức dưới dấu căn về hằng đẳng thức ${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$

-Áp dụng $\sqrt[3]{{{a^3}}} = a$

Lời giải chi tiết :

Ta có $\sqrt[3]{{{x^3} + 3{x^2} + 3x + 1}} – \sqrt[3]{{8{x^3} + 12{x^2} + 6x + 1}}$$ = \sqrt[3]{{{{\left( {x + 1} \right)}^3}}} – \sqrt[3]{{{{\left( {2x + 1} \right)}^3}}}$

$= x + 1 – 2x – 1 =  – x$.

Câu 17 :

Tính \(A = \,\sqrt[3]{{2 + 10\sqrt {\dfrac{1}{{27}}} }}\, + \,\sqrt[3]{{2 – 10\sqrt {\dfrac{1}{{27}}} }}\)

  • A.
     \(A = 2\).
  • B.
     \(A = 1\).
  • C.
     \(A = 5\).
  • D.
     \(A = 8\).

Đáp án : A

Phương pháp giải :

Ta sử dụng hằng đẳng thức: \({\left( {a + b} \right)^3} = {a^3} + {b^3} + 3ab\left( {a + b} \right)\), xác định phương trình nhận A làm nghiệm.

Lời giải chi tiết :

Ta có:

\(\begin{array}{l}A = \,\sqrt[3]{{2 + 10\sqrt {\dfrac{1}{{27}}} }}\, + \,\sqrt[3]{{2 – 10\sqrt {\dfrac{1}{{27}}} }}\\{A^3} = {\left( {\sqrt[3]{{2 + 10\sqrt {\dfrac{1}{{27}}} }}\, + \,\sqrt[3]{{2 – 10\sqrt {\dfrac{1}{{27}}} }}} \right)^3}\\\,\,\,\,\,\,\, = \,2 + 10\sqrt {\dfrac{1}{{27}}}  + 2 – 10\sqrt {\dfrac{1}{{27}}}  + 3.\sqrt[3]{{2 + 10\sqrt {\dfrac{1}{{27}}} }}.\sqrt[3]{{2 – 10\sqrt {\dfrac{1}{{27}}} }}.\left( {\sqrt[3]{{2 + 10\sqrt {\dfrac{1}{{27}}} }}\, + \,\sqrt[3]{{2 – 10\sqrt {\dfrac{1}{{27}}} }}} \right)\\\,\,\,\,\,\,\, = \,4 + 3.\sqrt[3]{{{2^2} – {{\left( {10\sqrt {\dfrac{1}{{27}}} } \right)}^2}}}.A\\\,\,\,\,\,\,\, = \,4 + 3.\sqrt[3]{{\dfrac{8}{{27}}}}.A\\\,\,\,\,\,\,\, = \,4 + 3.\dfrac{2}{3}.A\\\,\,\,\,\,\,\, = 4 + 2A\end{array}\)

Vậy giá trị của A thảo mãn phương trình \({A^3} = 4 + 2A\)

\(\begin{array}{l} \Leftrightarrow {A^3} – 2A – 4 = 0\\ \Leftrightarrow {A^3} – 8 – 2A + 4 = 0\\ \Leftrightarrow \left( {A – 2} \right)\left( {{A^2} + 2A + 4} \right) – 2\left( {A – 2} \right) = 0\\ \Leftrightarrow \left( {A – 2} \right)\left( {{A^2} + 2A + 4 – 2} \right) = 0\\ \Leftrightarrow \left( {A – 2} \right)\left( {{A^2} + 2A + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}A – 2 = 0\\{A^2} + 2A + 2 = 0\,\,\left( {vô\,\,nghiệm} \right)\end{array} \right. \Leftrightarrow A = 2.\end{array}\)

(Do \({A^2} + 2A + 2 = {\left( {A + 1} \right)^2} + 1 > 0\) với mọi A).

Vậy giá trị của \(A = 2\).

TẢI APP ĐỂ XEM OFFLINE