Bài 6 trang 143 SGK Toán 11 tập 1 – Chân trời sáng tạo

Thống kê điểm trung bình môn Toán của một số học sinh lớp 11 được cho ở bảng sau:

Đề bài

Thống kê điểm trung bình môn Toán của một số học sinh lớp 11 được cho ở bảng sau:

Hãy ước lượng số trung bình, tứ phân vị và mốt của mẫu số liệu ghép nhóm trên.

Phương pháp giải – Xem chi tiết

Sử dụng công thức tính số trung bình, mốt, tứ phân vị của mẫu số liệu ghép nhóm.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Ta có:

Tổng số học sinh: \(n = 8 + 10 + 16 + 24 + 13 + 7 + 4 = 82\)

• Điểm trung bình môn Toán của các học sinh lớp 11 trên là:

\(\bar x = \frac{{8.6,75 + 10.7,25 + 16.7,75 + 24.8,25 + 13.8,75 + 7.9,25 + 4.9,75}}{{82}} = 8,12\)

• Nhóm chứa mốt của mẫu số liệu trên là nhóm \(\left[ {8;8,5} \right)\).

Do đó: \({u_m} = 8;{n_{m – 1}} = 16;{n_m} = 24;{n_{m + 1}} = 13;{u_{m + 1}} – {u_m} = 8,5 – 8 = 0,5\)

Mốt của mẫu số liệu ghép nhóm là:

\({M_O} = {u_m} + \frac{{{n_m} – {n_{m – 1}}}}{{\left( {{n_m} – {n_{m – 1}}} \right) + \left( {{n_m} – {n_{m + 1}}} \right)}}.\left( {{u_{m + 1}} – {u_m}} \right) = 8 + \frac{{24 – 16}}{{\left( {24 – 16} \right) + \left( {24 – 13} \right)}}.0,5 \approx 8,21\)

• Gọi \({x_1};{x_2};…;{x_{82}}\) là điểm của các học sinh lớp 11 được xếp theo thứ tự không giảm.

Ta có:

\(\begin{array}{l}{x_1},…,{x_8} \in \begin{array}{*{20}{c}}{\left[ {6,5;7} \right)}\end{array};{x_9},…,{x_{18}} \in \begin{array}{*{20}{c}}{\left[ {7;7,5} \right)}\end{array};{x_{19}},…,{x_{34}} \in \begin{array}{*{20}{c}}{\left[ {7,5;8} \right)}\end{array};{x_{35}},…,{x_{58}} \in \begin{array}{*{20}{c}}{\left[ {8;8,5} \right)}\end{array};\\{x_{59}},…,{x_{71}} \in \begin{array}{*{20}{c}}{\left[ {8,5;9} \right)}\end{array};{x_{72}},…,{x_{78}} \in \begin{array}{*{20}{c}}{\left[ {9;9,5} \right)}\end{array};{x_{79}},…,{x_{82}} \in \begin{array}{*{20}{c}}{\left[ {9,5;10} \right)}\end{array}\end{array}\)

Tứ phân vị thứ hai của dãy số liệu là: \(\frac{1}{2}\left( {{x_{41}} + {x_{42}}} \right)\)

Ta có: \(n = 82;{n_m} = 24;C = 8 + 10 + 16 = 34;{u_m} = 8;{u_{m + 1}} = 8,5\)

Do \({x_{41}},{x_{42}} \in \begin{array}{*{20}{l}}{\left[ {8;8,5} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} – C}}{{{n_m}}}.\left( {{u_{m + 1}} – {u_m}} \right) = 8 + \frac{{\frac{{82}}{2} – 34}}{{24}}.\left( {8,5 – 8} \right) \approx 8,15\)

Tứ phân vị thứ nhất của dãy số liệu là: \({x_{21}}\).

Ta có: \(n = 82;{n_m} = 16;C = 8 + 10 = 18;{u_m} = 7,5;{u_{m + 1}} = 8\)

Do \({x_{21}} \in \begin{array}{*{20}{l}}{\left[ {7,5;8} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} – C}}{{{n_m}}}.\left( {{u_{m + 1}} – {u_m}} \right) = 7,5 + \frac{{\frac{{82}}{4} – 18}}{{16}}.\left( {8 – 7,5} \right) \approx 7,58\)

Tứ phân vị thứ ba của dãy số liệu là: \({x_{62}}\).

Ta có: \(n = 82;{n_j} = 13;C = 8 + 10 + 16 + 24 = 58;{u_j} = 8,5;{u_{j + 1}} = 9\)

Do \({x_{62}} \in \begin{array}{*{20}{l}}{\left[ {8,5;9} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} – C}}{{{n_j}}}.\left( {{u_{j + 1}} – {u_j}} \right) = 8,5 + \frac{{\frac{{3.82}}{4} – 58}}{{13}}.\left( {9 – 8,5} \right) \approx 8,63\)

 

TẢI APP ĐỂ XEM OFFLINE