6. Mệnh đề chứa kí hiệu Với mọi, Tồn tại

+ Kí hiệu (forall ) đọc là “với mọi” + Kí hiệu (exists ) đọc là “tồn tại”

1. Lý thuyết

+ Kí hiệu \(\forall \) đọc là “với mọi

+ Kí hiệu \(\exists \) đọc là “tồn tại

+  Mệnh đề “\(\forall x \in X,P(x)\)

Đúng nếu với mọi \({x_0} \in X\), \(P({x_0})\) là mệnh đề đúng.

Sai nếu có \({x_0} \in X\) sao cho \(P({x_0})\) là mệnh đề sai.

+  Mệnh đề “\(\exists x \in X,P(x)\)

Đúng nếu có \({x_0} \in X\) sao cho \(P({x_0})\) là mệnh đề đúng.

Sai nếu mọi \({x_0} \in X\) ta có \(P({x_0})\) là mệnh đề sai.

+ Mệnh đề phủ định

Phủ định của mệnh đề \(\forall x \in X,P(x)\) là \(\exists x \in X,\overline {P(x)} \).

Phủ định của mệnh đề \(\exists x \in X,P(x)\) là \(\forall x \in X,\overline {P(x)} \).

 

2. Ví dụ minh họa

A: “Mọi số tự nhiên đều không âm”

B: “Với mọi số thực x, \(\sqrt x \) là số vô tỉ”

C: “Có số tự nhiên n sao cho \(n(n + 2)\) là số chính phương”

+ Viết lại các mệnh đề, sử dụng kí hiệu \(\forall ,\;\exists \)

A: “\(\forall n \in \mathbb{N},n \ge 0\)”

B: “\(\forall x \in \mathbb{R}|\sqrt x \) là số vô tỉ”

C: “\(\exists n \in \mathbb{N}|n(n + 3)\) là số chính phương”

+ Xét tính đúng sai:

Mệnh đề A đúng.

Mệnh đề B sai vì \(x = 1 \in \mathbb{R},\sqrt x  = 1\) không là số vô tỉ.

Mệnh đề C đúng, vì \(n = 1\) thì \(n(n + 3) = 4\) là số chính phương.

TẢI APP ĐỂ XEM OFFLINE

Chương 1. Mệnh đề và tập hợp

Chương 2. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Chương 3. Hàm số bậc hai và đồ thị

Chương 4. Hệ thức lượng trong tam giác