1. Hàm số bậc hai. Đồ thị hàm số bậc hai.

Hàm số bậc hai là hàm số cho bởi công thức \(y = a{x^2} + bx + c\), trong đó \(x\) là biến số, \(a,b,c\) là hằng số và \(a \ne 0\).

1. Lý thuyết

+ Định nghĩa:

Hàm số bậc hai là hàm số cho bởi công thức \(y = a{x^2} + bx + c\), trong đó \(x\) là biến số, \(a,b,c\) là hằng số và \(a \ne 0\).

Tập xác định của hàm số bậc hai là \(\mathbb{R}\)

+ Đồ thị hàm số bậc hai

Đồ thị hàm số \(y = a{x^2} + bx + c\;(a \ne 0)\) là một parabol, có đỉnh là điểm \(I\left( { – \frac{b}{{2a}}; – \frac{{{b^2} – 4ac}}{{4a}}} \right)\), có trục đối xứng là đường thẳng \(x =  – \frac{b}{{2a}}\).

Parabol này quay bề lõm lên trên nếu \(a > 0\), xuống dưới nếu \(a < 0\).

+ Các bước vẽ đồ thị hàm số \(y = a{x^2} + bx + c\)

Bước 1: Xác định a,b,c từ đó suy ra tọa độ đỉnh \(I\left( { – \frac{b}{{2a}}; – \frac{{{b^2} – 4ac}}{{4a}}} \right)\)

Bước 2: Xác định trục đối xứng  \(x =  – \frac{b}{{2a}}\)

Bước 3: Xác định giao điểm của parabol với trục tung, trục hoành (nếu có) và vài điểm đặc biệt (đối xứng nhau qua trục đối xứng) trên parabol

Bước 4: Vẽ parabol.

2. Ví dụ minh họa

Ví dụ 1. Vẽ đồ thị hàm số \(y = {x^2} + 2x + 2\)

Hàm số \(y = {x^2} + 2x + 2\) có \(a = 1,b = 2,c = 2\)

\( \Rightarrow  – \frac{b}{{2a}} =  – \frac{2}{{2.1}} =  – 1;y( – 1) = {( – 1)^2} + 2.( – 1) + 2 = 1\)

+ Tọa độ đỉnh \(I( – 1;1)\)

+ Trục đối xứng \(x =  – 1\)

+ Giao điểm với trục tung là A(0;2), không cắt trục hoành (vì \(y = {x^2} + 2x + 2 = {(x + 1)^2} + 1 > 0\;\forall x \in \mathbb{R}\))

+ Lấy điểm B(-2;2) đối xứng với A(0;2) qua trục đối xứng. Điểm C(1;5), D(-3;5) thuộc đồ thị.

 

Ví dụ 2. Vẽ đồ thị hàm số \(y =  – {x^2} + 2x\)

Hàm số \(y =  – {x^2} + 2x\) có \(a =  – 1,b = 2,c = 0\)

\( \Rightarrow  – \frac{b}{{2a}} =  – \frac{2}{{2.( – 1)}} = 1;y(1) =  – {1^2} + 2.1 = 1\)

+ Tọa độ đỉnh \(I(1;1)\)

+ Trục đối xứng \(x = 1\)

+ Giao điểm với trục tung là O(0;0), điểm giao với trục hoành là A(2;0)

+ Lấy điểm B(-1;-3) thuộc đồ thị. Điểm C(3;-3) đối xứng với B(-1;-3) qua trục đối xứng

 

TẢI APP ĐỂ XEM OFFLINE

Chương 1. Mệnh đề và tập hợp

Chương 2. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Chương 3. Hàm số bậc hai và đồ thị

Chương 4. Hệ thức lượng trong tam giác