3. Đồ thị của hàm số

Đồ thị của hàm số \(y = f(x)\) xác định trên tập D là tập hợp tất cả các điểm \(M(x;f(x))\) trên mặt phẳn tọa độ với mọi x thuộc D. Kí hiệu: \((C) = \{ M(x;f(x))|x \in D\} \)

1. Lý thuyết

+ Định nghĩa:

Đồ thị của hàm số \(y = f(x)\) xác định trên tập D là tập hợp tất cả các điểm \(M(x;f(x))\) trên mặt phẳn tọa độ với mọi x thuộc D.

Kí hiệu: \((C) = \{ M(x;f(x))|x \in D\} \)

+ Kiểm tra điểm thuộc đồ thị hàm số

Điểm \(M({x_M};{y_M})\) thuộc đồ thị hàm số \(y = f(x)\)\( \Leftrightarrow \left\{ \begin{array}{l}{x_M} \in D\\{y_M} = f({x_M})\end{array} \right.\)

Điểm \(M({x_M};{y_M})\) không thuộc đồ thị hàm số \(y = f(x)\)\( \Leftrightarrow \left[ \begin{array}{l}{x_M} \notin D\\{y_M} \ne f({x_M})\end{array} \right.\)

2. Ví dụ minh họa

Đồ thị hàm số \(y = 2x – 3\)

\((C) = \{ M(x;2x – 3)|x \in \mathbb{R}\} \)

 

Đồ thị hàm số \(y = 2x – 3\) là đường thẳng, đi qua hai điểm (0;-3) và (1,5;0).

Điểm thuộc đồ thị hàm số, điểm không thuộc đồ thị hàm số

Quan sát đồ thị của hàm số \(y = {x^2} – 4\)

 

Các điểm (2;0), (-2;0), (1; -3), (0;-4) thuộc đồ thị hàm số.

Các điểm (2;2), (-2;3), (1; 2), (0;3) không thuộc đồ thị hàm số.

TẢI APP ĐỂ XEM OFFLINE

Chương 1. Mệnh đề và tập hợp

Chương 2. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Chương 3. Hàm số bậc hai và đồ thị

Chương 4. Hệ thức lượng trong tam giác