Giải bài 3 trang 90 sách bài tập toán 11 – Chân trời sáng tạo tập 1

Xét tính liên tục của hàm số: a) \(f\left( x \right) = \left| {x + 1} \right|\) tại điểm \(x = – 1\); b) \(g\left( x \right) = \left\{ \begin{array}{l}\frac{{\left| {x – 1} \right|}}{{x – 1}}\;\;\;khi\;x \ne 1\\\;\;\;\;1\;\;\;\;\;\;khi\;x = 1\end{array} \right.\) tại điểm \(x = 1\).

Đề bài

Xét tính liên tục của hàm số:

a) \(f\left( x \right) = \left| {x + 1} \right|\) tại điểm \(x =  – 1\);

b) \(g\left( x \right) = \left\{ \begin{array}{l}\frac{{\left| {x – 1} \right|}}{{x – 1}}\;\;\;khi\;x \ne 1\\\;\;\;\;1\;\;\;\;\;\;khi\;x = 1\end{array} \right.\) tại điểm \(x = 1\).

Phương pháp giải – Xem chi tiết

Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để xét tính liên tục của hàm số: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a) Tập xác định của hàm số là \(D = \mathbb{R}\), chứa điểm \( – 1\).

Ta có: \(\mathop {\lim }\limits_{x \to  – {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  – {1^ + }} \left| {x + 1} \right| = \mathop {\lim }\limits_{x \to  – {1^ + }} \left( {x + 1} \right) =  – 1 + 1 = 0;\) \(f\left( { – 1} \right) = \left| { – 1 + 1} \right| = 0\);

\(\mathop {\lim }\limits_{x \to  – {1^ – }} f\left( x \right) = \mathop {\lim }\limits_{x \to  – {1^ – }} \left| {x + 1} \right| = \mathop {\lim }\limits_{x \to  – {1^ – }} \left( { – x – 1} \right) = 1 – 1 = 0\)

Vì \(\mathop {\lim }\limits_{x \to  – {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  – {1^ – }} f\left( x \right) = f\left( { – 1} \right) = 0\) nên hàm số f(x) liên tục tại điểm \(x =  – 1\).

b) Tập xác định của hàm số là \(D = \mathbb{R}\), chứa điểm 1.

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left| {x – 1} \right|}}{{x – 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{x – 1}}{{x – 1}} = \mathop {\lim }\limits_{x \to {1^ + }} 1 = 1;\) \(\mathop {\lim }\limits_{x \to {1^ – }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ – }} \frac{{\left| {x – 1} \right|}}{{x – 1}} = \mathop {\lim }\limits_{x \to {1^ – }} \frac{{ – x + 1}}{{x – 1}} = \mathop {\lim }\limits_{x \to {1^ – }} \left( { – 1} \right) =  – 1\)

Vì \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ – }} g\left( x \right)\) nên hàm số g(x) không liên tục tại điểm \(x = 1\).

TẢI APP ĐỂ XEM OFFLINE