Giải bài 1 trang 84 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Sử dụng định nghĩa, tìm các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 1} \left( {{x^3} - 3x} \right)\); b) \(\mathop {\lim }\limits_{x \to 2} \sqrt {2x + 5} \); c) \(\mathop {\lim...
Xem chi tiết
Giải bài 2 trang 84 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Tìm các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 3} \left( {8 + 3x - {x^2}} \right)\); b) \(\mathop {\lim }\limits_{x \to 2} \left[ {\left( {5x - 1} \right)\left( {2 - 4x} \right)}...
Xem chi tiết
Giải bài 3 trang 84 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Tìm các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - 2} \frac{{{x^2} - 4}}{{x + 2}}\); b) \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^3} - 1}}{{1 - x}}\); c) \(\mathop {\lim }\limits_{x \to 3} \frac{{{x^2}...
Xem chi tiết
Giải bài 4 trang 84 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Cho hai hàm số f(x) và g(x) có (mathop {lim }limits_{x to 4} fleft( x right) = 2) và (mathop {lim }limits_{x to 4} gleft( x right) = - 3). Tìm các giới hạn: a)...
Xem chi tiết
Giải bài 5 trang 84 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Cho hai hàm số f(x) và g(x) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 3\) và \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2g\left( x...
Xem chi tiết
Giải bài 6 trang 84 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}3x + 4,x \le - 1\\3 - 2{x^2},x > - 1\end{array} \right.\) Tìm các giới hạn \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right),\mathop...
Xem chi tiết
Giải bài 7 trang 84 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}2x + 1,x \le 1\\\sqrt {{x^2} + a} ,x > 1\end{array} \right.\) Tìm giá trị của tham số a sao cho tồn tại giới hạn \(\mathop {\lim...
Xem chi tiết
Giải bài 8 trang 85 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Mỗi giới hạn sau có tồn tại không? Nếu có, hãy tìm giới hạn đó. a) \(\mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{{\left| x \right|}}\); b) \(\mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 2x}}{{\left| {x -...
Xem chi tiết
Giải bài 9 trang 85 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Tìm các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to + \infty } \frac{x}{{x + 4}}\); b) \(\mathop {\lim }\limits_{x \to - \infty } \frac{{2{x^2} + 1}}{{{{\left( {2x + 1} \right)}^2}}}\); c) \(\mathop {\lim }\limits_{x...
Xem chi tiết
Giải bài 10 trang 85 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Tính các giới hạn sau: a) \(\mathop {\lim }\limits_{x \to - \infty } \left( {{x^3} + 2{x^2} - 1} \right)\); b) \(\mathop {\lim }\limits_{x \to + \infty } \frac{{{x^3} + 2{x^2}}}{{3{x^2} + 1}}\); c) \(\mathop...
Xem chi tiết
Giải bài 11 trang 85 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Tìm giá trị của các tham số a và b, biết rằng: a) \(\mathop {\lim }\limits_{x \to 2} \frac{{ax + b}}{{x - 2}} = 5\); b) \(\mathop {\lim }\limits_{x \to 1} \frac{{a\sqrt x + b}}{{x...
Xem chi tiết
Giải bài 12 trang 85 sách bài tập toán 11 – Chân trời sáng tạo tập 1
Trong mặt phẳng tọa độ Oxy, cho điểm \(M\left( {t,{t^2}} \right),t > 0\), nằm trên đường parabol \(y = {x^2}\). Đường trung trực của đoạn thẳng OM cắt trục tung tại N. Điểm N dần...
Xem chi tiết

TẢI APP ĐỂ XEM OFFLINE