5. Hệ phương trình bậc nhất hai ẩn chứa tham số

Đề bài

Câu 1 :

Biết hệ phương trình: $\left\{ \begin{array}{l}2x + by = a\\bx + ay = 5\end{array} \right.$ có nghiệm $x = 1$; $y = 3.$Tính $10\left( {a + b} \right)$

  • A.

    $15$

  • B.

    $16$

  • C.

    $14$

  • D.

    $17$

Câu 2 :

Cho hệ phương trình $\left\{ \begin{array}{l}x + 2y = m + 3\\2x – 3y = m\end{array} \right.$  ($m$ là tham số) . Tìm $m$ để hệ có nghiệm duy nhất $\left( {x,y} \right)$ thỏa mãn $x + y =  – 3$.

  • A.

    $m =  – 6$

  • B.

    $m = 6$

  • C.

    $m = 3$

  • D.

    $m =  – 4$

Câu 3 :

Cho hệ phương trình $\left\{ \begin{array}{l}2x + y = 5m – 1\\x – 2y = 2\end{array} \right.$. Có bao nhiêu giá trị của $m$ để hệ phương trình có nghiệm thỏa mãn: ${x^2} – 2{y^2} =  – 2$

  • A.

    $0$

  • B.

    $1$

  • C.

    $2$

  • D.

    $3$

Câu 4 :

Cho hệ phương trình $\left\{ \begin{array}{l}(m – 1)x + y = 2\\mx + y = m + 1\end{array} \right.$ ($m$ là tham số) . Nghiệm của hệ phương trình khi $m = 2$ là

  • A.

    $\left( {x;y} \right) = \left( { 1; – 1} \right)$

  • B.

    $\left( {x;y} \right) = \left( { – 1; – 1} \right)$

  • C.

    $\left( {x;y} \right) = \left( { – 1;1} \right)$

  • D.

    $\left( {x;y} \right) = \left( {1;1} \right)$

Câu 5 :

Cho hệ phương trình $\left\{ \begin{array}{l}(m – 1)x + y = 2\\mx + y = m + 1\end{array} \right.$ ($m$ là tham số). Kết luận nào sau đây là đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình

  • A.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y \le {\rm{3}}$

  • B.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y > {\rm{3}}$

  • C.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y \ge {\rm{3}}$

  • D.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y = {\rm{3}}$

Câu 6 :

Biết rằng  hệ phương trình $\left\{ \begin{array}{l}(m – 2)x – 3y =  – 5\\x + my = 3\end{array} \right.$có nghiệm duy nhất với mọi $m$. Tìm nghiệm duy nhất đó theo $m$.

  • A.

    $\left( {x;y} \right) = \left( {\dfrac{{9 + 5m}}{{{m^2} – 2m + 3}};\dfrac{{3m + 1}}{{{m^2} – 2m + 3}}} \right)$

  • B.

    $\left( {x;y} \right) = \left( {\dfrac{{9 – 5m}}{{{m^2} – 2m + 3}};\dfrac{{3m – 1}}{{{m^2} – 2m + 3}}} \right)$

  • C.

    $\left( {x;y} \right) = \left( {\dfrac{{ – 9 – 5m}}{{{m^2} – 2m + 3}};\dfrac{{ – 3m – 1}}{{{m^2} – 2m + 3}}} \right)$

  • D.

    $\left( {x;y} \right) = \left( {\dfrac{{9 – 5m}}{{{m^2} – 2m + 3}};\dfrac{{3m + 1}}{{{m^2} – 2m + 3}}} \right)$

Câu 7 :

Cho hệ phương trình $\left\{ \begin{array}{l}3x + y = 2m + 9\\x + y = 5\end{array} \right.$ có nghiệm $\left( {x;y} \right)$. Tìm $m$ để biểu thức $A = xy + x – 1$ đạt giá trị lớn nhất.

  • A.

    $m = 1$

  • B.

    $m = 0$

  • C.

    $m =  – 1$

  • D.

    $m = 2$

Câu 8 :

Cho hệ phương trình: $\left\{ \begin{array}{l}x + my = m + 1\\mx + y = 2m\end{array} \right.$ ($m$ là tham số). Tìm $m$ để hệ phương trình có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $\left\{ \begin{array}{l}x \ge 2\\y \ge 1\end{array} \right.$

  • A.

    $m < 1$

  • B.

    $m < -1$

  • C.

    $m > 1$

  • D.

    $m >  – 1$

Câu 9 :

Cho hệ phương trình :$\left\{ \begin{array}{l}2x + ay =  – 4\\ax – 3y = 5\end{array} \right.$. Hệ phương trình có nghiệm duy nhất khi

  • A.

    $a < 1$

  • B.

    $a <  – 2$

  • C.

    Mọi \(a\)

  • D.

    $a >  – 1$

Câu 10 :

Cho hệ phương trình: $\left\{ \begin{array}{l}\left( {a + 1} \right)x – y = a + 1\begin{array}{*{20}{c}}{}&{\left( 1 \right)}\end{array}\\x + \left( {a – 1} \right)y = 2\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{}&{}&{\left( 2 \right)}\end{array}}&{}\end{array}\end{array} \right.$ ($a$ là tham số)

Với $a \ne 0$ hệ có nghiệm duy nhất $\left( {x;y} \right)$. Tính $x + y$ theo $a$

  • A.

    $x + y = \dfrac{{{a^2} + a + 2}}{{{a^2}}}$          

  • B.

    $x + y = \dfrac{{{a^2} + 2}}{{{a^2}}}$

  • C.

    $x + y = \dfrac{{{a^2} + a + 1}}{{{a^2}}}$

  • D.

    $x + y = \dfrac{{a + 2}}{{{a^2}}}$

Câu 11 :

Cho hệ phương trình: $\left\{ \begin{array}{l}\left( {a + 1} \right)x – y = a + 1\begin{array}{*{20}{c}}{}&{\left( 1 \right)}\end{array}\\x + \left( {a – 1} \right)y = 2\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{}&{}&{\left( 2 \right)}\end{array}}&{}\end{array}\end{array} \right.$

($a$ là tham số)

Với $a \ne 0$ hệ có nghiệm duy nhất $\left( {x;y} \right)$. Tìm các số nguyên $a$ để hệ phương trình có nghiệm nguyên

  • A.

    $a = 1$

  • B.

    $a =  – 1$

  • C.

    $a \ne \left\{ { \pm 1} \right\}$

  • D.

    $a =  \pm 1$

Câu 12 :

Cho hệ phương trình\(\left\{ \begin{array}{l}x + 2y = 2\\mx – y = m\end{array} \right..\) Trong trường hợp hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\), tìm điều kiện của m để \(x > 1\) và \(y > 0.\)

  • A.

    $m > 0$

  • B.

    $m > 1$

  • C.

    $m <  – 1$

  • D.

    $m > 2$

Câu 13 :

Cho hệ phương trình\(\left\{ \begin{array}{l}mx – y = 2m\\4x – my = m + 6\end{array} \right..\) Trong trường hợp hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\), tìm hệ thức liên hệ giữa $x, y$ không phụ thuộc vào $m$

  • A.

    $2x + y + 3 = 0$

  • B.

    $2x – y = 3$

  • C.

    $ – 2x + y = 3$

  • D.

    $2x + y = 3$

Câu 14 :

Cho hệ phương trình\(\left\{ \begin{array}{l}mx – y = 2m\\4x – my = m + 6\end{array} \right..\) Trong trường hợp hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\), tìm giá trị của m để : \(6x – 2y = 13.\)

  • A.

    $m =  – 9$

  • B.

    $m = 9$

  • C.

    $m = 8$

  • D.

    $m =  – 8$

Lời giải và đáp án

Câu 1 :

Biết hệ phương trình: $\left\{ \begin{array}{l}2x + by = a\\bx + ay = 5\end{array} \right.$ có nghiệm $x = 1$; $y = 3.$Tính $10\left( {a + b} \right)$

  • A.

    $15$

  • B.

    $16$

  • C.

    $14$

  • D.

    $17$

Đáp án : B

Phương pháp giải :

-Thay $x;y$ vào hệ phương trình ta được hệ phương trình mới ẩn $a,b$.

-Giải hệ phương trình mới bằng phương pháp cộng đại số hoặc phương pháp thế ta tìm được $a,b$

Lời giải chi tiết :

Thay $x = 1$; $y = 3$ vào hệ ta có:

$\left\{ \begin{array}{l}2.1 + b.3 = a\\b.1 + a.3 = 5\end{array} \right.$$ \Leftrightarrow $$\left\{ \begin{array}{l}a – 3b = 2\\3a + b = 5\end{array} \right.$$ \Leftrightarrow $$\left\{ \begin{array}{l}3a – 9b = 6\\3a + b = 5\end{array} \right.$$ \Leftrightarrow $$\left\{ \begin{array}{l}10b =  – 1\\3a + b = 5\end{array} \right.$$ \Leftrightarrow $$\left\{ \begin{array}{l}b = \dfrac{{ – 1}}{{10}}\\a = \dfrac{{17}}{{10}}\end{array} \right.$.

Vậy $a = \dfrac{{ – 1}}{{10}}$; $y = \dfrac{{17}}{{10}}$ thì hệ phương trình có nghiệm $x = 1$; $y = 3.$

$ \Rightarrow 10\left( {a + b} \right) = 16$

Câu 2 :

Cho hệ phương trình $\left\{ \begin{array}{l}x + 2y = m + 3\\2x – 3y = m\end{array} \right.$  ($m$ là tham số) . Tìm $m$ để hệ có nghiệm duy nhất $\left( {x,y} \right)$ thỏa mãn $x + y =  – 3$.

  • A.

    $m =  – 6$

  • B.

    $m = 6$

  • C.

    $m = 3$

  • D.

    $m =  – 4$

Đáp án : A

Phương pháp giải :

Bước 1: Giải hệ phương trình tìm được nghiệm $\left( {x,y} \right)$ theo tham số $m$

Bước 2: Thay $x,y$ vừa tìm được vào hệ thức yêu cầu để tìm $m$

Lời giải chi tiết :

Ta có $\left\{ \begin{array}{l}x + 2y = m + 3\\2x – 3y = m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2x + 4y = 2m + 6\\2x – 3y = m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + 2y = m + 3\\7y = m + 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \dfrac{{5m + 9}}{7}\\y = \dfrac{{m + 6}}{7}\end{array} \right.$

Hệ phương trình có nghiệm duy nhất $\left( {x;y} \right) = \left( {\dfrac{{5m + 9}}{7};\dfrac{{m + 6}}{7}} \right)$.

Lại có $x + y =  – 3$ hay $\dfrac{{5m + 9}}{7} + \dfrac{{m + 6}}{7} =  – 3 \Leftrightarrow 5m + 9 + m + 6 =  – 21 \Leftrightarrow 6m =  – 36 \Leftrightarrow m =  – 6$

Vậy với $m =  – 6$ thì hệ phương trình  có nghiệm duy nhất $\left( {x,y} \right)$ thỏa mãn $x + y =  – 3$.

Câu 3 :

Cho hệ phương trình $\left\{ \begin{array}{l}2x + y = 5m – 1\\x – 2y = 2\end{array} \right.$. Có bao nhiêu giá trị của $m$ để hệ phương trình có nghiệm thỏa mãn: ${x^2} – 2{y^2} =  – 2$

  • A.

    $0$

  • B.

    $1$

  • C.

    $2$

  • D.

    $3$

Đáp án : C

Phương pháp giải :

Bước 1: Giải hệ phương trình tìm được nghiệm $\left( {x,y} \right)$ theo tham số $m$

Bước 2: Thay $x,y$ vừa tìm được vào hệ thức yêu cầu để tìm $m$

Lời giải chi tiết :

Ta có $\left\{ \begin{array}{l}2x + y = 5m – 1\\x – 2y = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}y = 5m – 1-2x\\x – 2(5m-1-2x) = 2\end{array} \right.\Leftrightarrow\left\{ \begin{array}{l}y = 5m – 1-2x\\5x= 10m\end{array} \right.\Leftrightarrow\left\{ \begin{array}{l}x = 2m\\y =m-1\end{array} \right.$

Thay vào ${x^2} – 2{y^2} =  – 2$ ta có

${x^2} – 2{y^2} =  – 2 \Leftrightarrow {(2m)^2} – 2{(m – 1)^2} =  – 2 \Leftrightarrow 2{m^2} + 4m = 0 \Leftrightarrow \left[ \begin{array}{l}m = 0\\m =  – 2\end{array} \right.$

Vậy $m \in \left\{ {-2;0} \right\}$.

Câu 4 :

Cho hệ phương trình $\left\{ \begin{array}{l}(m – 1)x + y = 2\\mx + y = m + 1\end{array} \right.$ ($m$ là tham số) . Nghiệm của hệ phương trình khi $m = 2$ là

  • A.

    $\left( {x;y} \right) = \left( { 1; – 1} \right)$

  • B.

    $\left( {x;y} \right) = \left( { – 1; – 1} \right)$

  • C.

    $\left( {x;y} \right) = \left( { – 1;1} \right)$

  • D.

    $\left( {x;y} \right) = \left( {1;1} \right)$

Đáp án : D

Phương pháp giải :

Thay $m$ vào hệ phương trình rồi giải hệ bằng phương pháp thế hoặc cộng đại số ta tìm được nghiệm.

Lời giải chi tiết :

Thay $m = 2$ vào hệ ta được $\left\{ \begin{array}{l}x + y = 2\\2x + y = 3\end{array} \right.$

Khi đó $\left\{ \begin{array}{l}x + y = 2\\2x + y = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x + y = 2\\x = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 1\end{array} \right.$

Vậy hệ phương trình có nghiệm duy nhất $\left( {1;1} \right)$ khi $m = 2$.

Câu 5 :

Cho hệ phương trình $\left\{ \begin{array}{l}(m – 1)x + y = 2\\mx + y = m + 1\end{array} \right.$ ($m$ là tham số). Kết luận nào sau đây là đúng khi nói về nghiệm $\left( {x;y} \right)$ của hệ phương trình

  • A.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y \le {\rm{3}}$

  • B.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y > {\rm{3}}$

  • C.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y \ge {\rm{3}}$

  • D.

    Hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $2x + y = {\rm{3}}$

Đáp án : A

Phương pháp giải :

Bước 1: Giải hệ phương trình tìm được nghiệm $\left( {x,y} \right)$ theo tham số $m$

Bước 2: Thay $x,y$ vừa tìm được vào hệ thức yêu cầu để tìm $m$

Lời giải chi tiết :

Từ $\left( {m – 1} \right)x + y = 2$ thế vào phương trình còn lại ta được phương trình: 

$mx + 2-\left( {m – 1} \right)x = m + 1 \Leftrightarrow x = m-1$ suy ra $y = 2-{\left( {m – 1} \right)^2}$ với mọi $m$

Vậy hệ phương trình luôn có nghiệm duy nhất $\left( {x;y} \right) = \left( {m – 1;2-{{\left( {m – 1} \right)}^2}} \right)$

$2x + {\rm{ }}y = 2\left( {m – 1} \right) + 2-{\left( {m – 1} \right)^2} =  – {m^2} + 4m – 1$

$= 3-{\left( {m – 2} \right)^2} \le 3$ với mọi $m$.

Câu 6 :

Biết rằng  hệ phương trình $\left\{ \begin{array}{l}(m – 2)x – 3y =  – 5\\x + my = 3\end{array} \right.$có nghiệm duy nhất với mọi $m$. Tìm nghiệm duy nhất đó theo $m$.

  • A.

    $\left( {x;y} \right) = \left( {\dfrac{{9 + 5m}}{{{m^2} – 2m + 3}};\dfrac{{3m + 1}}{{{m^2} – 2m + 3}}} \right)$

  • B.

    $\left( {x;y} \right) = \left( {\dfrac{{9 – 5m}}{{{m^2} – 2m + 3}};\dfrac{{3m – 1}}{{{m^2} – 2m + 3}}} \right)$

  • C.

    $\left( {x;y} \right) = \left( {\dfrac{{ – 9 – 5m}}{{{m^2} – 2m + 3}};\dfrac{{ – 3m – 1}}{{{m^2} – 2m + 3}}} \right)$

  • D.

    $\left( {x;y} \right) = \left( {\dfrac{{9 – 5m}}{{{m^2} – 2m + 3}};\dfrac{{3m + 1}}{{{m^2} – 2m + 3}}} \right)$

Đáp án : B

Phương pháp giải :

Bước 1: Rút $x$ từ phương trình dưới thay vào phương trình trên

Bước 2: Tìm $y$ theo phương trình mới, từ đó suy ra $x$

Lời giải chi tiết :

Ta có $\left\{ \begin{array}{l}(m – 2)x – 3y =  – 5\\x + my = 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}(m – 2)(3 – my) – 3y =  – 5\\x = 3 – my\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3m – {m^2}y – 6 + 2my – 3y =  – 5\\x = 3 – my\end{array} \right.$

$ \Leftrightarrow \left\{ \begin{array}{l}({m^2} – 2m + 3)y = 3m – 1{\rm{          }}(1)\\x = 3 – my{\rm{       }}\,{\rm{                       }}(2)\end{array} \right.$

Ta có: ${m^2} – 2m + 3 = {(m – 1)^2} + 2 > 0 \,\,\,\forall m$ nên PT $\left( 1 \right)$ có nghiệm duy nhất $\forall m$

Hay hệ phương trình có nghiệm duy nhất $\forall m$

Từ $\left( 1 \right)$ ta có:$y = \dfrac{{3m – 1}}{{{m^2} – 2m + 3}}$ thay vào $\left( 2 \right)$ ta có $x = \dfrac{{9 – 5m}}{{{m^2} – 2m + 3}}$

Vậy $\left( {x;y} \right) = \left( {\dfrac{{9 – 5m}}{{{m^2} – 2m + 3}};\dfrac{{3m – 1}}{{{m^2} – 2m + 3}}} \right)$

Câu 7 :

Cho hệ phương trình $\left\{ \begin{array}{l}3x + y = 2m + 9\\x + y = 5\end{array} \right.$ có nghiệm $\left( {x;y} \right)$. Tìm $m$ để biểu thức $A = xy + x – 1$ đạt giá trị lớn nhất.

  • A.

    $m = 1$

  • B.

    $m = 0$

  • C.

    $m =  – 1$

  • D.

    $m = 2$

Đáp án : A

Phương pháp giải :

Bước 1: Giải hệ phương trình tìm được nghiệm $\left( {x,y} \right)$ theo tham số $m$

Bước 2: Thay $x,y$ vừa tìm được vào hệ thức yêu cầu để tìm $m$

Lời giải chi tiết :

Ta có $\left\{ \begin{array}{l}3x + y = 2m + 9\\x + y = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = m + 2\\y = 3 – m\end{array} \right. \Rightarrow A = xy + x – 1 = 8 – {\left( {m – 1} \right)^2}$ $ \Rightarrow {A_{max}} = 8$ khi $m = 1$.

Câu 8 :

Cho hệ phương trình: $\left\{ \begin{array}{l}x + my = m + 1\\mx + y = 2m\end{array} \right.$ ($m$ là tham số). Tìm $m$ để hệ phương trình có nghiệm duy nhất $\left( {x;y} \right)$ thỏa mãn $\left\{ \begin{array}{l}x \ge 2\\y \ge 1\end{array} \right.$

  • A.

    $m < 1$

  • B.

    $m < -1$

  • C.

    $m > 1$

  • D.

    $m >  – 1$

Đáp án : B

Phương pháp giải :

Bước 1: Giải hệ phương trình tìm được nghiệm $\left( {x,y} \right)$ theo tham số $m$

Bước 2: Thay $x,y$ vừa tìm được vào hệ thức yêu cầu để tìm $m$

Lời giải chi tiết :

Xét hệ $\left\{ \begin{array}{l}x + my = m + 1\begin{array}{*{20}{c}}{}&{}\end{array}\left( 1 \right)\\mx + y = 2m\begin{array}{*{20}{c}}{}&{}\end{array}\left( 2 \right)\end{array} \right.$

Từ (2) $ \Rightarrow y = 2m – mx$ thay vào (1) ta được $x + m\left( {2m – mx} \right) = m + 1 \Leftrightarrow 2{m^2} – {m^2}x + x = m + 1$

$ \Leftrightarrow \left( {1 – {m^2}} \right)x =  – 2{m^2} + m + 1 \Leftrightarrow \left( {{m^2} – 1} \right)x = 2{m^2} – m – 1$ $\left( 3 \right)$         

Hệ phương trình đã cho có nghiệm duy nhất $ \Leftrightarrow \left( 3 \right)$có nghiệm duy nhất ${m^2} – 1 \ne 0 \Leftrightarrow m \ne  \pm 1$ $\left( * \right)$

Khi đó hệ đã cho có nghiệm duy nhất $\left\{ \begin{array}{l}x = \dfrac{{2m + 1}}{{m + 1}}\\y = \dfrac{m}{{m + 1}}\end{array} \right.$

Ta có $\left\{ \begin{array}{l}x \ge 2\\y \ge 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{2m + 1}}{{m + 1}} \ge 2\\\dfrac{m}{{m + 1}} \ge 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{ – 1}}{{m + 1}} \ge 0\\\dfrac{{ – 1}}{{m + 1}} \ge 0\end{array} \right. \Leftrightarrow m + 1 < 0 \Leftrightarrow m <  – 1$

Kết hợp với $\left( * \right)$ ta được giá trị $m$ cần tìm là $m <  – 1$.

Câu 9 :

Cho hệ phương trình :$\left\{ \begin{array}{l}2x + ay =  – 4\\ax – 3y = 5\end{array} \right.$. Hệ phương trình có nghiệm duy nhất khi

  • A.

    $a < 1$

  • B.

    $a <  – 2$

  • C.

    Mọi \(a\)

  • D.

    $a >  – 1$

Đáp án : C

Phương pháp giải :

Hệ phương trình $\left\{ \begin{array}{l}ax + by = c\\a’x + b’y = c’\end{array} \right.$ có nghiệm duy nhất khi $\dfrac{a}{{a’}} \ne \dfrac{b}{{b’}}$ với $a’,b’ \ne 0.$

Lời giải chi tiết :

Ta xét 2 trường hợp:

+ Nếu \(a = 0\), hệ có dạng: $\left\{ \begin{array}{l}2x =  – 4\\ – 3y = 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x =  – 2\\y =  – \dfrac{5}{3}\end{array} \right.$. Vậy hệ có nghiệm duy nhất.

+ Nếu $a \ne 0$, hệ có nghiệm duy nhất khi và chỉ khi: $\dfrac{2}{a} \ne \dfrac{a}{{ – 3}} \Leftrightarrow {a^2} \ne  – 6$ (luôn đúng, vì ${a^2} \ge 0$ với mọi \(a\))

Do đó, với $a \ne 0$, hệ luôn có nghiệm duy nhất.

Tóm lại hệ phương trình đã cho có nghiệm duy nhất với mọi \(a\).

Câu 10 :

Cho hệ phương trình: $\left\{ \begin{array}{l}\left( {a + 1} \right)x – y = a + 1\begin{array}{*{20}{c}}{}&{\left( 1 \right)}\end{array}\\x + \left( {a – 1} \right)y = 2\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{}&{}&{\left( 2 \right)}\end{array}}&{}\end{array}\end{array} \right.$ ($a$ là tham số)

Với $a \ne 0$ hệ có nghiệm duy nhất $\left( {x;y} \right)$. Tính $x + y$ theo $a$

  • A.

    $x + y = \dfrac{{{a^2} + a + 2}}{{{a^2}}}$          

  • B.

    $x + y = \dfrac{{{a^2} + 2}}{{{a^2}}}$

  • C.

    $x + y = \dfrac{{{a^2} + a + 1}}{{{a^2}}}$

  • D.

    $x + y = \dfrac{{a + 2}}{{{a^2}}}$

Đáp án : A

Phương pháp giải :

Bước 1: Rút $x$ từ phương trình dưới thay vào phương trình trên

Bước 2: Tìm $y$ theo phương trình mới, từ đó suy ra $x$

Lời giải chi tiết :

Từ PT $\left( 1 \right)$ ta có: $y = \left( {a + 1} \right)x – \left( {a + 1} \right)\,\,\,\,\left( * \right)$ thế vào PT $\left( 2 \right)$ ta được: $x + \left( {a – 1} \right)\left[ {\left( {a + 1} \right)x – \left( {a + 1} \right)} \right] = 2 \Leftrightarrow x + \left( {{a^2} – 1} \right)x – \left( {{a^2} – 1} \right) = 2 \Leftrightarrow {a^2}x = {a^2} + 1\,\,\,\,\left( 3 \right)$ 

Với $a \ne 0$, phương trình $\left( 3 \right)$ có nghiệm duy nhất $x = \dfrac{{{a^2} + 1}}{{{a^2}}}$. Thay vào $\left( * \right)$ ta có:

$y = \left( {a + 1} \right)\dfrac{{{a^2} + 1}}{{{a^2}}} – \left( {a + 1} \right) = \dfrac{{\left( {a + 1} \right)\left( {{a^2} + 1} \right) – {a^2}\left( {a + 1} \right)}}{{{a^2}}} = \dfrac{{{a^3} + a + {a^2} + 1 – {a^3} – {a^2}}}{{{a^2}}} = \dfrac{{a + 1}}{{{a^2}}}$

Suy ra hệ phương trình đã cho có nghiệm duy nhất$\left( {x;y} \right) = \left( {\dfrac{{{a^2} + 1}}{{{a^2}}};\dfrac{{a + 1}}{{{a^2}}}} \right)$

$ \Rightarrow x + y = \dfrac{{{a^2} + 1}}{{{a^2}}} + \dfrac{{a + 1}}{{{a^2}}} = \dfrac{{{a^2} + a + 2}}{{{a^2}}}$

Câu 11 :

Cho hệ phương trình: $\left\{ \begin{array}{l}\left( {a + 1} \right)x – y = a + 1\begin{array}{*{20}{c}}{}&{\left( 1 \right)}\end{array}\\x + \left( {a – 1} \right)y = 2\begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{}&{}&{\left( 2 \right)}\end{array}}&{}\end{array}\end{array} \right.$

($a$ là tham số)

Với $a \ne 0$ hệ có nghiệm duy nhất $\left( {x;y} \right)$. Tìm các số nguyên $a$ để hệ phương trình có nghiệm nguyên

  • A.

    $a = 1$

  • B.

    $a =  – 1$

  • C.

    $a \ne \left\{ { \pm 1} \right\}$

  • D.

    $a =  \pm 1$

Đáp án : D

Phương pháp giải :

Bước 1: Rút $x$ từ phương trình dưới thay vào phương trình trên

Bước 2: Tìm $y$ theo phương trình mới, từ đó suy ra $x$

Bước 3: Từ điều kiện $x,y$ nguyên để tìm $a$.

Lời giải chi tiết :

Từ PT $\left( 1 \right)$ ta có: $y = \left( {a + 1} \right)x – \left( {a + 1} \right)$ (*) thế vào PT $\left( 2 \right)$ ta được: $x + \left( {a – 1} \right)\left[ {\left( {a + 1} \right)x – \left( {a + 1} \right)} \right] = 2 \Leftrightarrow x + \left( {{a^2} – 1} \right)x – \left( {{a^2} – 1} \right) = 2 \Leftrightarrow {a^2}x = {a^2} + 1 \,\,\,\,  (3)$

Với $a \ne 0$, phương trình $\left( 3 \right)$ có nghiệm duy nhất $x = \dfrac{{{a^2} + 1}}{{{a^2}}}$. Thay vào $\left( * \right)$ ta có:

$y = \left( {a + 1} \right)\dfrac{{{a^2} + 1}}{{{a^2}}} – \left( {a + 1} \right) = \dfrac{{\left( {a + 1} \right)\left( {{a^2} + 1} \right) – {a^2}\left( {a + 1} \right)}}{{{a^2}}} = \dfrac{{{a^3} + a + {a^2} + 1 – {a^3} – {a^2}}}{{{a^2}}} = \dfrac{{a + 1}}{{{a^2}}}$

Suy ra hệ phương trình đã cho có nghiệm duy nhất$\left( {x;y} \right) = \left( {\dfrac{{{a^2} + 1}}{{{a^2}}};\dfrac{{a + 1}}{{{a^2}}}} \right)$

Hệ phương trình có nghiệm nguyên: $\left\{ {\begin{array}{*{20}{c}}{x \in \mathbb{Z}}\\{y \in \mathbb{Z}}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{\dfrac{{{a^2} + 1}}{{{a^2}}} \in \mathbb{Z}}\\{\dfrac{{a + 1}}{{{a^2}}} \in \mathbb{Z}}\end{array}} \right.\begin{array}{*{20}{c}}{}&{\left( {a \in \mathbb{Z}} \right)}\end{array}$

Điều kiện cần: $x = \dfrac{{{a^2} + 1}}{{{a^2}}} = 1 + \dfrac{1}{{{a^2}}} \in \mathbb{Z}$

$\Leftrightarrow \dfrac{1}{{{a^2}}} \in \mathbb{Z} $ mà  $a^2 > 0$ 

\( \Rightarrow {a^2} = 1 \Leftrightarrow a = \pm 1\) (TM \(a \ne 0\))

Điều kiện đủ:

$a =  – 1 \Rightarrow y = 0 \in \mathbb{Z}$ (nhận)

$a = 1 \Rightarrow y = 2 \in \mathbb{Z}$ (nhận)

Vậy $a =  \pm 1$ hệ phương trình đã cho có nghiệm nguyên.

Câu 12 :

Cho hệ phương trình\(\left\{ \begin{array}{l}x + 2y = 2\\mx – y = m\end{array} \right..\) Trong trường hợp hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\), tìm điều kiện của m để \(x > 1\) và \(y > 0.\)

  • A.

    $m > 0$

  • B.

    $m > 1$

  • C.

    $m <  – 1$

  • D.

    $m > 2$

Đáp án : A

Phương pháp giải :

Bước 1: Giải hệ phương trình tìm được nghiệm $\left( {x,y} \right)$ theo tham số $m$

Bước 2: Thay $x,y$ vừa tìm được vào hệ thức yêu cầu để tìm $m$

Lời giải chi tiết :

Ta có \(\left\{ \begin{array}{l}x + 2y = 2\\mx – y = m\end{array} \right..\)$ \Leftrightarrow \left\{ \begin{array}{l}x = 2 – 2y\\m\left( {2 – 2y} \right) – y = m\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}x = 2 – 2y\\\left( {2m + 1} \right)y = m\end{array} \right.$

Để hệ phương trình có nghiệm duy nhất thì $m \ne  – \dfrac{1}{2} $

Suy ra $y = \dfrac{m}{{2m + 1}} \Rightarrow x = 2 – 2.\dfrac{m}{{2m + 1}}$$ \Rightarrow x = \dfrac{{2m + 2}}{{2m + 1}}$

Vậy hệ có nghiệm duy nhất  $\left\{ \begin{array}{l}x = \dfrac{{2m + 2}}{{2m + 1}}\\y = \dfrac{m}{{2m + 1}}\end{array} \right.$

Để $\left\{ \begin{array}{l}x > 1\\y > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{2m + 2}}{{2m + 1}} > 1\\\dfrac{m}{{2m + 1}} > 0\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{{2m + 1}} > 0\\\dfrac{m}{{2m + 1}} > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}2m + 1 > 0\\m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m >  – \dfrac{1}{2}\\m > 0\end{array} \right. \Rightarrow m > 0$

Kết hợp điều kiện $m \ne  – \dfrac{1}{2}$ ta có $m>0.$

Câu 13 :

Cho hệ phương trình\(\left\{ \begin{array}{l}mx – y = 2m\\4x – my = m + 6\end{array} \right..\) Trong trường hợp hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\), tìm hệ thức liên hệ giữa $x, y$ không phụ thuộc vào $m$

  • A.

    $2x + y + 3 = 0$

  • B.

    $2x – y = 3$

  • C.

    $ – 2x + y = 3$

  • D.

    $2x + y = 3$

Đáp án : D

Phương pháp giải :

Bước 1: Giải hệ phương trình tìm được nghiệm $\left( {x,y} \right)$ theo tham số $m.$

Bước 2: Dùng phương pháp cộng đại số hoặc phương pháp thế làm mất tham số \(m\) và kết luận.

Lời giải chi tiết :

Ta có \(\left\{ \begin{array}{l}mx – y = 2m\\4x – my = m + 6\end{array} \right..\)$ \Leftrightarrow \left\{ \begin{array}{l}y = mx – 2m\\4x – m\left( {mx – 2m} \right) = m + 6\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}y = mx – 2m\\x\left( {{m^2} – 4} \right) = 2{m^2} – m – 6\end{array} \right.$

Hệ phương trình có nghiệm duy nhất khi ${m^2} – 4 \ne 0 \Leftrightarrow m \ne \left\{ { 2; -2} \right\}$

Khi đó $x = \dfrac{{2{m^2} – m – 6}}{{{m^2} – 4}} = \dfrac{{\left( {2m + 3} \right)\left( {m – 2} \right)}}{{\left( {m – 2} \right)\left( {m + 2} \right)}} = \dfrac{{2m + 3}}{{m + 2}}$$ \Rightarrow y = m.\dfrac{{2m + 3}}{{m + 2}} – 2m$$ = \dfrac{{ – m}}{{m + 2}}$

$ \Rightarrow \left\{ \begin{array}{l}x = \dfrac{{2m + 3}}{{m + 2}}\\y = \dfrac{{ – m}}{{m + 2}}\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}x = 2 – \dfrac{1}{{m + 2}}\\y =  – 1 + \dfrac{2}{{m + 2}}\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}2x = 4 – \dfrac{2}{{m + 2}}\\y =  – 1 + \dfrac{2}{{m + 2}}\end{array} \right.$$ \Rightarrow 2x + y = 3$.

Vậy hệ thức không phụ thuộc vào $m$ là $2x + y = 3$.

Câu 14 :

Cho hệ phương trình\(\left\{ \begin{array}{l}mx – y = 2m\\4x – my = m + 6\end{array} \right..\) Trong trường hợp hệ phương trình có nghiệm duy nhất \(\left( {x;y} \right)\), tìm giá trị của m để : \(6x – 2y = 13.\)

  • A.

    $m =  – 9$

  • B.

    $m = 9$

  • C.

    $m = 8$

  • D.

    $m =  – 8$

Đáp án : C

Phương pháp giải :

Bước 1: Giải hệ phương trình tìm được nghiệm $\left( {x,y} \right)$ theo tham số $m$

Bước 2: Thay $x,y$ vừa tìm được vào phương trình yêu cầu để tìm $m$

Lời giải chi tiết :

Ta có \(\left\{ \begin{array}{l}mx – y = 2m\\4x – my = m + 6\end{array} \right..\)$ \Leftrightarrow \left\{ \begin{array}{l}y = mx – 2m\\4x – m\left( {mx – 2m} \right) = m + 6\end{array} \right.$$ \Leftrightarrow \left\{ \begin{array}{l}y = mx – 2m\\x\left( {{m^2} – 4} \right) = 2{m^2} – m – 6\end{array} \right.$

Hệ phương trình có nghiệm duy nhất khi ${m^2} – 4 \ne 0 \Leftrightarrow m \ne \left\{ { -2;2} \right\}$

Khi đó $x = \dfrac{{2{m^2} – m – 6}}{{{m^2} – 4}} = \dfrac{{\left( {2m + 3} \right)\left( {m – 2} \right)}}{{\left( {m – 2} \right)\left( {m + 2} \right)}} = \dfrac{{2m + 3}}{{m + 2}}$$ \Rightarrow y = m.\dfrac{{2m + 3}}{{m + 2}} – 2m$.

Thay $\left\{ \begin{array}{l}x = \dfrac{{2m + 3}}{{m + 2}}\\y = \dfrac{{ – m}}{{m + 2}}\end{array} \right.$ vào phương trình \(6x – 2y = 13\) ta được

$6.\dfrac{{2m + 3}}{{m + 2}} – 2.\dfrac{{ – m}}{{m + 2}} = 13$

$\Leftrightarrow \dfrac{{14m + 18}}{{m + 2}} = 13$

$\Rightarrow 14m + 18 = 13m + 26 $

$\Leftrightarrow m = 8\left( {TM} \right)$

Vậy $m = 8$ là giá trị cần tìm.

TẢI APP ĐỂ XEM OFFLINE