Giải bài 1 trang 65 sách bài tập toán 11 – Cánh diều

Cho \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) là \(f'\left( {{x_0}} \right)\). Phát biểu nào sau đây là đúng?

Đề bài

Cho \(y = f\left( x \right)\) có đạo hàm tại \({x_0}\) là \(f’\left( {{x_0}} \right)\). Phát biểu nào sau đây là đúng?

A. \(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) + f\left( {{x_0}} \right)}}{{x + {x_0}}}\)

B. \(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) – f\left( {{x_0}} \right)}}{{x – {x_0}}}\)

C. \(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) – f\left( {{x_0}} \right)}}{{x + {x_0}}}\)

D. \(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) + f\left( {{x_0}} \right)}}{{x – {x_0}}}\)

Phương pháp giải – Xem chi tiết

Dựa vào định nghĩa để làm

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Theo định nghĩa đạo hàm ta có: \(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) – f\left( {{x_0}} \right)}}{{x – {x_0}}}\).

Chọn đáp án B.

TẢI APP ĐỂ XEM OFFLINE