Bài 7.30 trang 63 SGK Toán 11 tập 2 – Kết nối tri thức

Cho khối chóp đều S.ABCD, đáy có cạnh 6 cm. Tính thể tích của khối chóp đó trong các trường hợp sau.

Đề bài

Cho khối chóp đều S.ABCD, đáy có cạnh 6 cm. Tính thể tích của khối chóp đó trong các trường hợp sau.

a) Cạnh bên tạo với mặt đáy một góc bằng \({60^0}.\)

b) Mặt bên tạo với mặt đáy một góc bằng \({45^0}.\)

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

– Thế tích khối chóp \(V = \frac{1}{3}h.S\)

– Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của đường thẳng trên mặt phẳng đó.

– Góc giữa hai mặt phẳng là góc giữa 2 đường thẳng trong hai mặt phẳng vuông góc với giao tuyến tại cùng một điểm.

Vui lòng nhập mật khẩu để tiếp tục

test123

Lời giải chi tiết

a)

 

Gọi \(AC \cap BD = \left\{ O \right\}\) mà S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\)

\( \Rightarrow \) O là hình chiếu của S trên (ABCD)

C là hình chiếu của C trên (ABCD)

\( \Rightarrow \) OC là hình chiếu của SC trên (ABCD)

\( \Rightarrow \) (SC, (ABCD)) = (SC, OC) \( = \widehat {SCO}\)

Mà cạnh bên tạo với mặt đáy một góc bằng \({60^0}.\)

\( \Rightarrow \widehat {SCO} = {60^0}\)

Xét tam giác ABC vuông tại B có \(AC = \sqrt {A{B^2} + B{C^2}}  = \sqrt {{6^2} + {6^2}}  = 6\sqrt 2 \left( {cm} \right)\)

\( \Rightarrow OC = \frac{{AC}}{2} = \frac{{6\sqrt 2 }}{2} = 3\sqrt 2 \left( {cm} \right)\)

Xét tam giác SOC vuông tại O có

\(\tan \widehat {SCO} = \frac{{SO}}{{OC}} \Rightarrow SO = 6\sqrt 2 .\tan {60^0} = 6\sqrt 6 \left( {cm} \right)\)

\({S_{ABCD}} = {6^2} = 36\left( {c{m^2}} \right)\)

Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.6\sqrt 6 .36 = 72\sqrt 6 \left( {c{m^3}} \right)\)

b)

 

Trong (ABCD) kẻ \(OE \bot CD\)

\(\begin{array}{l}SO \bot CD\left( {SO \bot \left( {ABCD} \right)} \right)\\ \Rightarrow CD \bot \left( {SOE} \right),SE \subset \left( {SOE} \right) \Rightarrow CD \bot SE,OE \bot CD,\left( {SCD} \right) \cap \left( {ABCD} \right) = CD\\ \Rightarrow \left( {\left( {SCD} \right),\left( {ABCD} \right)} \right) = \left( {SE,OE} \right) = \widehat {SEO}\end{array}\)

Mà mặt bên tạo với mặt đáy một góc bằng \({45^0}.\)

\( \Rightarrow \widehat {SEO} = {45^0}\)

Ta có \(\left. \begin{array}{l}OE \bot CD\\AD \bot CD\end{array} \right\} \Rightarrow OE//AD\) mà O là trung điểm AC nên OE là đường trung bình tam giác ACD.

\( \Rightarrow OE = \frac{{AD}}{2} = \frac{6}{2} = 3\left( {cm} \right)\)

Xét tam giác SOE vuông tại O có

\(\tan \widehat {SEO} = \frac{{SO}}{{OE}} \Rightarrow SO = 3.\tan {45^0} = 3\left( {cm} \right)\)

Vậy khối chóp có thể tích \(V = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.3.36 = 36\left( {c{m^3}} \right)\)

TẢI APP ĐỂ XEM OFFLINE