Giải bài 18 trang 75 sách bài tập toán 11 – Cánh diều

Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4\), chứng minh rằng:

Đề bài

Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4\), chứng minh rằng:

a) \(\mathop {\lim }\limits_{x \to 3} 3f\left( x \right) = 12\)                     

b) \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{4} = 1\)                          

c) \(\mathop {\lim }\limits_{x \to 3} \sqrt {f\left( x \right)}  = 2\)

Phương pháp giải – Xem chi tiết

Sử dụng định lí về các phép toán giới hạn hữu hạn của hàm số.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Định lí về các phép toán trên giới hạn hữu hạn của hàm số: Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) thì

\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\), \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) – g\left( x \right)} \right] = L – M\)

 \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) nếu \(M \ne 0\).

a) Ta có \(\mathop {\lim }\limits_{x \to 3} 3f\left( x \right) = \mathop {\lim }\limits_{x \to 3} 3.\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 3.4 = 12\).

b) Ta có \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{4} = \frac{{\mathop {\lim }\limits_{x \to 3} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 3} 4}} = \frac{4}{4} = 1\).

c) Ta có \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4 \ge 0\) nên \(\mathop {\lim }\limits_{x \to 3} \sqrt {f\left( x \right)}  = \sqrt 4  = 2\)

TẢI APP ĐỂ XEM OFFLINE