Giải bài 1.12 trang 11 sách bài tập toán 11 – Kết nối tri thức với cuộc sống

Chứng minh đẳng thức sau

Đề bài

Chứng minh đẳng thức sau

\({\sin ^4}a + {\cos ^4}a = 1 – \frac{1}{2}{\sin ^2}2a = \frac{3}{4} + \frac{1}{4}\cos 4a\).

Phương pháp giải – Xem chi tiết

Tách vế trái thành hằng đẳng thức, áp dụng công thức góc nhân đôi và công thức hạ bậc để biến đổi thành vế còn lại.

\(\sin 2x = 2\sin x\cos x\)

\({\sin ^2}x = \frac{{1 – \cos 2x}}{2}\).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

\(\begin{array}{l}{\sin ^4}a + {\cos ^4}a = {\sin ^4}a + 2{\sin ^2}a{\cos ^2}a + {\cos ^4}a – 2{\sin ^2}a{\cos ^2}a\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = ({\sin ^4}a + 2{\sin ^2}a{\cos ^2}a + {\cos ^4}a) – \frac{1}{2}.4{\sin ^2}a{\cos ^2}a\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left( {{{\sin }^2}a + {{\cos }^2}a} \right)^2} – \frac{1}{2}{(2{\mathop{\rm sinacosa}\nolimits} )^2}\,\,\,\,\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 1 – \frac{1}{2}{\sin ^2}2a\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 1 – \frac{1}{2}\left( {\frac{{1 – \cos 4a}}{2}} \right) = 1 – \frac{{1 – \cos 4a}}{4}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{3}{4} + \frac{1}{4}\cos 4a.\end{array}\)

TẢI APP ĐỂ XEM OFFLINE