Giải bài 1.13 trang 11 sách bài tập toán 11 – Kết nối tri thức với cuộc sống

Tính giá trị các biểu thức sau:

Đề bài

Tính giá trị các biểu thức sau:

a) \(A = \sin \frac{\pi }{9} – \sin \frac{{5\pi }}{9} + \sin \frac{{7\pi }}{9}\);                         

b) \(B = \sin {6^0}\sin {42^0}\sin {66^0}\sin {78^0}\).

Phương pháp giải – Xem chi tiết

Áp dụng công thức  biến đổi tổng thành tích và công thức góc lượng giác liên quan:

\(\sin a + \sin b = 2\sin \left( {\frac{{a + b}}{2}} \right)\cos \left( {\frac{{a – b}}{2}} \right)\)

\(\sin (\pi  – a) = \sin a\).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

a)

\(\begin{array}{l}A = \sin \frac{\pi }{9} – \sin \frac{{5\pi }}{9} + \sin \frac{{7\pi }}{9}\\A = \left( {\sin \frac{{7\pi }}{9} + \sin \frac{\pi }{9}} \right) – \sin \frac{{5\pi }}{9}\\\,\,\,\,\,\, = 2\sin \left( {\frac{{\frac{{7\pi }}{9} + \frac{\pi }{9}}}{2}} \right)\cos \left( {\frac{{\frac{{7\pi }}{9} – \frac{\pi }{9}}}{2}} \right) – \sin \frac{{5\pi }}{9}\\\,\,\,\,\,\, = 2\sin \left( {\frac{{4\pi }}{9}} \right)\cos \frac{\pi }{3} – \sin \frac{{5\pi }}{9} = 2\sin \left( {\frac{{4\pi }}{9}} \right).\frac{1}{2} – \sin \frac{{5\pi }}{9}\\\,\,\,\,\,\, = \sin \left( {\frac{{4\pi }}{9}} \right) – \sin \frac{{5\pi }}{9} = \sin \left( {\pi  – \frac{{4\pi }}{9}} \right) – \sin \frac{{5\pi }}{9}\\\,\,\,\,\,\, = \sin \frac{{5\pi }}{9} – \sin \frac{{5\pi }}{9} = 0.\end{array}\)

b) Vì $\sin {{78}^{0}}=\cos {{12}^{0}};\sin {{66}^{0}}=\cos {{24}^{0}};\sin {{42}^{0}}=\cos {{48}^{0}}$ nên

$B=\sin {{6}^{0}}.\cos {{12}^{0}}.\cos {{24}^{0}}.\cos {{48}^{0}}$.

Nhân hai vế với cos60 và áp dụng công thức nhân đôi, ta được:

cos60.B = cos60.$\sin {{6}^{0}}.\cos {{12}^{0}}.\cos {{24}^{0}}.\cos {{48}^{0}}$ = $\frac{1}{16}.\sin {{96}^{0}}$

$=\frac{1}{16}\sin ({{90}^{0}}+{{6}^{0}})=\frac{1}{16}\cos {{6}^{0}}$.

Vậy B = $\frac{1}{16}$.

TẢI APP ĐỂ XEM OFFLINE