Câu 24 trang 205 SGK Đại số và Giải tích 11 Nâng cao

Viết phương trình tiếp tuyến của đồ thị hàm số

Lựa chọn câu để xem lời giải nhanh hơn

Viết phương trình tiếp tuyến của đồ thị hàm số

Vui lòng nhập mật khẩu để tiếp tục

test321

LG a

\(y = {{x – 1} \over {x + 1}}\), biết hoành độ tiếp điểm là x0 = 0

Phương pháp giải:

Phương trình tiếp tuyến tại điểm \(M(x_0;y_0)\) là:

\(y-y_0=f'(x_0)(x-x_0)\)

Lời giải chi tiết:

\(\eqalign{  & f\left( x \right) = {{x – 1} \over {x + 1}}  \cr  & {x_0} = 0 \Rightarrow {y_0} = f\left( 0 \right) =  – 1  \cr  & f’\left( x \right) \cr & = \frac{{\left( {x – 1} \right)’\left( {x + 1} \right) – \left( {x – 1} \right)\left( {x + 1} \right)’}}{{{{\left( {x + 1} \right)}^2}}} \cr &= \frac{{x + 1 – x + 1}}{{{{\left( {x + 1} \right)}^2}}}\cr & = {2 \over {{{\left( {x + 1} \right)}^2}}} \cr &\Rightarrow f’\left( 0 \right) = 2 \cr} \)

Phương trình tiếp tuyến cần tìm là :

\(y – \left( { – 1} \right) = 2\left( {x – 0} \right) \Leftrightarrow y = 2x – 1\)

LG b

 \(y = \sqrt {x + 2} ,\) biết tung độ tiếp điểm là y0 = 2.

Lời giải chi tiết:

\(\eqalign{  & f\left( x \right) = \sqrt {x + 2} \cr &f\left( {{x_0}} \right) = 2 \Leftrightarrow \sqrt {{x_0} + 2}  = 2 \cr &\Leftrightarrow {x_0} = 2  \cr  & f’\left( x \right) = {1 \over {2\sqrt {x + 2} }} \Rightarrow f’\left( 2 \right) = {1 \over 4} \cr} \)

Phương trình tiếp tuyến cần tìm là :

\(y – 2 = {1 \over 4}\left( {x – 2} \right) \Leftrightarrow y = {{x + 6} \over 4}\)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

ĐẠI SỐ VÀ GIẢI TÍCH – TOÁN 11 NÂNG CAO