Giải bài 9.21 trang 55 sách bài tập toán 8 – Kết nối tri thức với cuộc sống

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho (AM.AB = AN.AC).

Đề bài

Cho hai điểm M, N lần lượt nằm trên hai cạnh AB, AC của tam giác ABC sao cho \(AM.AB = AN.AC\).

a) Chứng minh rằng $\Delta AMN\backsim \Delta ACB$

b) Lấy E, F lần lượt là trung điểm của MN, BC. Chứng minh rằng \(\widehat {EAB} = \widehat {FAC}\)

Phương pháp giải – Xem chi tiết

Sử dụng kiến thức về định lý (trường hợp đồng dạng cạnh – góc – cạnh) để chứng minh: Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng với nhau.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a) Vì \(AM.AB = AN.AC\) nên \(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\)

Tam giác AMN và tam giác ABC có:

\(\frac{{AM}}{{AC}} = \frac{{AN}}{{AB}}\), góc A chung

Do đó, $\Delta AMN\backsim \Delta ACB$ (c – g – c)

b) Vì $\Delta AMN\backsim \Delta ACB$(cmt) nên \(\widehat {AMN} = \widehat C\)

và \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}}\)

Mà E, F lần lượt là trung điểm của MN, BC nên \(MN = 2ME,BC = 2FC\)

Do đó: \(\frac{{AM}}{{AC}} = \frac{{MN}}{{CB}} = \frac{{2ME}}{{2FC}} = \frac{{ME}}{{FC}}\)

Tam giác MAE và tam giác CAF có:

\(\widehat {AME} = \widehat C\) (cmt), \(\frac{{AM}}{{AC}} = \frac{{ME}}{{FC}}\) (cmt)

Do đó, $\Delta AME\backsim \Delta ACF\left( c-g-c \right)$ nên \(\widehat {EAB} = \widehat {FAC}\) (hai góc tương ứng)

TẢI APP ĐỂ XEM OFFLINE

SBT TOÁN TẬP 2 – KẾT NỐI TRI THỨC VỚI CUỘC SỐNG