Giải bài 4 trang 59 vở thực hành Toán 7

Bài 4. Biết rằng tam giác ABC bằng tam giác MNP, \(\widehat {BAC} + \widehat {MNP} = {115^o}\). Hãy tính số đo các góc ACB, MPN.

Đề bài

Bài 4. Biết rằng tam giác ABC bằng tam giác MNP, \(\widehat {BAC} + \widehat {MNP} = {115^o}\). Hãy tính số đo các góc ACB, MPN.

Phương pháp giải – Xem chi tiết

Hai tam giác bằng nhau có các cạnh tương ứng và các góc tương ứng bằng nhau

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

GT

\(\Delta ABC = \Delta MNP\),\(\widehat {BAC} + \widehat {MNP} = {115^o}\)

KL

Tính \(\widehat {ACB},\widehat {MPN}\)

Vì \(\Delta ABC = \Delta MNP\) nên ta có \(\widehat {ABC} = \widehat {MNP}\)( hai góc tương ứng). Do tổng ba góc trong tam giác ABC bằng \({180^o}\) nên ta có

\(\widehat {BAC} + \widehat {ABC} + \widehat {ACB} = {180^o} \Rightarrow \widehat {ACB} = {180^o} – \widehat {BAC} – \widehat {ABC} = {180^o} – {115^o} = {65^o}\)

Lại vì \(\Delta ABC = \Delta MNP\) nên \(\widehat {MPN} = \widehat {ACB} = {65^o}\)( hai góc tương ứng).

TẢI APP ĐỂ XEM OFFLINE

Vở thực hành Toán 7 – Tập 1