Giải bài 4.33 trang 68 sách bài tập toán 11 – Kết nối tri thức với cuộc sống

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng.

Đề bài

Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Chứng minh rằng sau điểm A, B, C, D, E, F là sáu đỉnh của một hình lăng trụ tam giác.

Phương pháp giải – Xem chi tiết

Cho 2 mặt phẳng song song \(\left( \alpha  \right)\) và \(\left( {\alpha ‘} \right)\). Trên \(\left( \alpha  \right)\) cho các đa giác lồi \({A_1}{A_2}…{A_n}\). Qua các đỉnh \({A_1},{A_2},…,{A_n}\) vẽ các đường thẳng đôi một song song và cắt mặt phẳng \(\left( {\alpha ‘} \right)\) tại \({A_1}’,{A_2}’,…,{A_n}’\). Hình gồm hai đa giác \({A_1}{A_2}…{A_n},{A_1}'{A_2}’…{A_n}’\) và các tứ giác \({A_1}{A_1}'{A_2}'{A_2},{A_2}{A_2}'{A_3}'{A_3},…,{A_n}{A_n}'{A_1}'{A_1}\) được gọi là hình lăng trụ và kí hiệu là \({A_1}{A_2}…{A_n}.{A_1}'{A_2}’…{A_n}’\).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Vì AD//BC (do ABCD là hình bình hành) nên AD//mp (BCE), AF//BE (do ABEF là hình bình hành) nên AF//mp (BCE).

Mà AD và AF là hai đường thẳng cắt nhau cùng nằm trong mặt phẳng ADF. Do đó, mp (ADF) //mp (BCE).

Các đường thẳng AB, CD, EF đôi một song song với nhau.

TẢI APP ĐỂ XEM OFFLINE