Giải bài 2.28 trang 38 Chuyên đề học tập Toán 10 – Kết nối tri thức

Tìm số hạng lớn nhất của khai triển \({(p + q)^n}\) với \(p > 0,q > 0,p + q = 1\)

Đề bài

Tìm số hạng lớn nhất của khai triển \({(p + q)^n}\) với \(p > 0,q > 0,p + q = 1\)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Ta có:

\({(p + q)^n} = C_n^0{p^n} + C_n^1{p^{n – 1}}q + C_n^2{p^{n – 2}}{q^2} + … + C_n^n{q^n} = \sum\limits_{k = 0}^n {C_n^k{p^{n – k}}{q^k}}  = \sum\limits_{k = 0}^n {{a_k}} \)

Giả sử \({a_k}\)là số hạng lớn nhất với \(1 \le k \le n – 1\)

\( \Rightarrow \left\{ \begin{array}{l}{a_k} \ge {a_{k – 1}}\\{a_k} \ge {a_{k + 1}}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}C_n^k{p^{n – k}}{q^k} \ge C_n^{k – 1}{p^{n – k + 1}}{q^{k – 1}}\quad (1)\\C_n^k{p^{n – k}}{q^k} \ge C_n^{k + 1}{p^{n – k – 1}}{q^{k + 1}}\quad (2)\end{array} \right.\)

\(\begin{array}{l}(1) \Leftrightarrow \frac{{n!}}{{k!\left( {n – k} \right)!}}{p^{n – k}}{q^k} \ge \frac{{n!}}{{(k – 1)!\left( {n – k + 1} \right)!}}{p^{n – k + 1}}{q^{k – 1}}\\ \Leftrightarrow \frac{1}{k}q \ge \frac{1}{{n – k + 1}}p \Leftrightarrow \frac{{1 – p}}{k} \ge \frac{p}{{n – k + 1}}\\ \Leftrightarrow pk \le (1 – p)(n – k + 1)\end{array}\)

\(\begin{array}{l}(2) \Leftrightarrow \frac{{n!}}{{k!\left( {n – k} \right)!}}{p^{n – k}}{q^k} \ge \frac{{n!}}{{(k + 1)!\left( {n – k – 1} \right)!}}{p^{n – k – 1}}{q^{k + 1}}\\ \Leftrightarrow \frac{1}{{n – k}}p \ge \frac{1}{{k + 1}}q \Leftrightarrow \frac{p}{{n – k}} \ge \frac{{1 – p}}{{k + 1}}\\ \Leftrightarrow p(k + 1) \ge (1 – p)(n – k)\\ \Leftrightarrow p(k + 1) + 1 – p \ge (1 – p)(n – k + 1)\end{array}\)

Từ (1) và (2) suy ra \(p(k + 1) + 1 – p \ge pk\)

TẢI APP ĐỂ XEM OFFLINE