Giải mục 2 trang 83 SGK Toán 11 tập 2 – Kết nối tri thức

Tính đạo hàm của hàm số (y = – {x^2} + 2x + 1) tại điểm ({x_0} = – 1.)

Đề bài

Tính đạo hàm của hàm số \(y =  – {x^2} + 2x + 1\) tại điểm \({x_0} =  – 1.\)

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

\(f’\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) – f\left( {{x_0}} \right)}}{{x – {x_0}}}\) nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) – f\left( {{x_0}} \right)}}{{x – {x_0}}}\)

Vui lòng nhập mật khẩu để tiếp tục

test123

Lời giải chi tiết

\(\begin{array}{c}f’\left( { – 1} \right) = \mathop {\lim }\limits_{x \to  – 1} \frac{{f\left( x \right) – f\left( { – 1} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to  – 1} \frac{{ – {x^2} + 2x + 1 + 2}}{{x + 1}} = \mathop {\lim }\limits_{x \to  – 1} \frac{{ – {x^2} + 2x + 3}}{{x + 1}}\\ = \mathop {\lim }\limits_{x \to  – 1} \frac{{\left( {x + 1} \right)\left( {3 – x} \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to  – 1} \left( {3 – x} \right) = 3 + 1 = 4\end{array}\)

Vậy \(f’\left( { – 1} \right) = 4\)

TẢI APP ĐỂ XEM OFFLINE