Giải bài 5 trang 45 sách bài tập toán 8 – Chân trời sáng tạo tập 2

Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC. a) Chứng minh tứ giác AMNB là hình thang.

Đề bài

Cho tam giác ABC có M, N lần lượt là trung điểm của AC, BC.

a) Chứng minh tứ giác AMNB là hình thang.

b) Gọi I là giao điểm của AN và BM. Trên tia đối của tia NA lấy điểm E sao cho \(NE = NI\). Trên tia đối của tia MB lấy điểm F sao cho \(MF = MI\). Chứng minh EF//AB.

Phương pháp giải – Xem chi tiết

+ Sử dụng kiến thức về đường trung bình của tam giác để chứng minh: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba.

+ Sử dụng kiến thức về tính chất của đường trung bình của tam giác để chứng minh: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy. 

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

a) Xét tam giác ABC có: \(MA = MC,NB = NC\) nên MN là đường trung bình của tam giác ABC, suy ra MN//AB, suy ra tứ giác AMNB là hình thang.

b) Xét tam giác IEF có: \(NE = NI\), \(MF = MI\) nên MN là đường trung bình của tam giác EIF, suy ra MN//EF

Mà MN//AB, suy ra EF//AB.

TẢI APP ĐỂ XEM OFFLINE