Giải bài 1.9 trang 8 sách bài tập toán 11 – Kết nối tri thức với cuộc sống

Kim giờ dài 6cm và kim phút dài 11cm của đồng hồ chỉ 4 giờ. Hỏi thời gian ít nhất để 2 kim vuông góc với nhau là bao nhiêu?

Đề bài

Kim giờ dài 6cm và kim phút dài 11cm của đồng hồ chỉ 4 giờ. Hỏi thời gian ít nhất để 2 kim vuông góc với nhau là bao nhiêu? Lúc đó tổng quãng đường 2 đầu mút kim giờ và kim phút đi được là bao nhiêu?

Phương pháp giải – Xem chi tiết

Từ thực tế kim giờ kim phút chạy như thế nào, ta suy ra được nó quét bao nhiêu phần của 1 vòng. 1 vòng có số đo \(2\pi \), ta dễ dàng tính được góc. Và từ góc, áp dụng công thức \(l = \alpha .R\)để tính tổng quãng đường đầu kim đi được.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Một giờ kim phút quét được một vòng, tương ứng với góc lượng giác \(2\pi \); kim giờ quét được 1/12 vòng, tương ứng với góc \(2\pi .\frac{1}{{12}} = \frac{\pi }{6}\).

Hiệu vận tốc giữa kim phút và kim giờ là: \(2\pi  – \frac{\pi }{6} = \frac{{11\pi }}{6}\).

Vào lúc 4 giờ hai kim tạo với nhau một góc 4/12 vòng tương ứng là \(\frac{4}{{12}}.2\pi  = \frac{{2\pi }}{3}\).

Khoảng thời gian ít nhất để hai kim vuông góc với nhau là

\(\left( {\frac{{2\pi }}{3} – \frac{\pi }{2}} \right):\frac{{11\pi }}{6} = \frac{1}{{11}}\) (giờ).

Vậy sau \(\frac{1}{{11}}\) (giờ) hai kim sẽ vuông góc với nhau.

Tổng quãng đường hai đầu mút kim đi được là

\(l = \alpha .R = 6.\frac{1}{{11}}.\frac{\pi }{6} + 11.\frac{1}{{11}}.2\pi  = \frac{{23\pi }}{{11}}(cm)\).

TẢI APP ĐỂ XEM OFFLINE