Bài 7 trang 143 SGK Giải tích 12

Chứng tỏ rằng với mọi số phức z, ta luôn có phần thực và phần ảo của z không vượt quá môdun của nó.

Đề bài

Chứng tỏ rằng với mọi số phức \(z\), ta luôn có phần thực và phần ảo của \(z\) không vượt quá môdun của nó.

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

Gọi \(z = a + bi \Rightarrow \left| z \right| = \sqrt {{a^2} + {b^2}} \), so sánh \(a\) với \( \left| z \right|\) và \(b\) với \( \left| z \right|\)

Vui lòng nhập mật khẩu để tiếp tục

test123

Lời giải chi tiết

Giả sử \(z = a + bi\)

Khi đó: \(\left| z \right| = \sqrt {{a^2} + {b^2}}\)

Từ đó suy ra:

\(\begin{array}{l}
\sqrt {{a^2} + {b^2}} \ge \sqrt {{a^2}} = \left| a \right| \ge a \Rightarrow \left| z \right| \ge a\\
\sqrt {{a^2} + {b^2}} \ge \sqrt {{b^2}} = \left| b \right| \ge b \Rightarrow \left| z \right| \ge b
\end{array}\)

 Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE