Bài 31 trang 19 SGK Toán 9 tập 1

a) So sánh. b) Chứng minh rằng.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Vui lòng nhập mật khẩu để tiếp tục

test321

LG a

So sánh \( \sqrt{25 – 16}\) và \(\sqrt {25}  – \sqrt {16}\)

Phương pháp giải:

Tính cụ thể từng kết quả rồi so sánh

Lời giải chi tiết:

Ta có:

+) \( \sqrt {25 – 16} = \sqrt 9 =\sqrt{3^2}= 3.\)  
+) \( \sqrt {25} – \sqrt {16} \)\(= \sqrt{5^2}-\sqrt{4^2}\)\(=5 – 4 = 1 \).

Vì \(3>1 \Leftrightarrow \sqrt {25 – 16}>\sqrt {25} – \sqrt {16} \).

Vậy \(\sqrt {25 – 16}  > \sqrt {25}  – \sqrt {16} \)

LG b

Chứng minh rằng: với \(a > b >0\) thì \(\sqrt a  – \sqrt b  < \sqrt {a – b} \)

Phương pháp giải:

+) Định lí so sánh hai căn bậc hai số học của hai số không âm:

\( a< b \Leftrightarrow \sqrt a < \sqrt b\).

+) \( \sqrt{ a^2} = a\),  với \( a \ge 0\). 

+) Sử dụng kết quả bài 26 trang 16 SGK toán 9 tập 1: Với hai số dương \(a,b\) ta có: \(\sqrt {a + b}  < \sqrt a  + \sqrt b \)

Lời giải chi tiết:

Bài ra cho \(a > b > 0\) nên \(\sqrt a ,\sqrt b \) và \(\sqrt {a – b} \) đều xác định và dương.

Ta sẽ so sánh \(\sqrt a \) với \(\sqrt {a – b}  + \sqrt b \) 

Theo kết quả bài 26 trang 16 SGK toán 9 tập 1, với hai số dương \(a-b\) và \(b,\) ta sẽ có:

\(\sqrt {a – b}  + \sqrt b  > \sqrt {a – b + b} \) 

Suy ra: 

\(\sqrt {a – b}  + \sqrt b  > \sqrt a  \Leftrightarrow \sqrt {a – b}  > \sqrt a  – \sqrt b \)

Vậy \(\sqrt a  – \sqrt b  < \sqrt {a – b} \) với \(a > b > 0.\) 

Cách khác 1: 

Với \(a > b > 0\) ta có \(\left\{ \begin{array}{l}\sqrt a  > \sqrt b \\a – b > 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\sqrt a  – \sqrt b  > 0\\\sqrt {a – b}  > 0\end{array} \right.\) 

Xét \(\sqrt a  – \sqrt b  < \sqrt {a – b} \) , bình phương hai vế ta được \({\left( {\sqrt a  – \sqrt b } \right)^2} < {\left( {\sqrt {a – b} } \right)^2} \)\(\Leftrightarrow {\left( {\sqrt a } \right)^2} – 2.\sqrt a .\sqrt b  + {\left( {\sqrt b } \right)^2} < a – b\)

\( \Leftrightarrow a – 2\sqrt {ab}  + b < a – b \)\(\Leftrightarrow 2b – 2\sqrt {ab}  < 0\)

\( \Leftrightarrow 2\sqrt b \left( {\sqrt b  – \sqrt a } \right) < 0\)  luôn đúng vì  \(\left\{ \begin{array}{l}\sqrt b  > 0\\\sqrt b  – \sqrt a  < 0\,\left( {do\,0 < b < a} \right)\end{array} \right.\)

Vậy \(\sqrt a  – \sqrt b  < \sqrt {a – b} \) với \(a > b > 0.\)

Cách khác 2:

Bài ra cho \(a > b > 0\) nên \(\sqrt a ,\sqrt b \) và \(\sqrt {a – b} \) đều xác định và dương.

Ta sẽ so sánh \(\sqrt a \) với \(\sqrt {a – b}  + \sqrt b \)

Ta có \(\sqrt {a – b}  + \sqrt b \) là số dương và

\({\left( {\sqrt {a – b}  + \sqrt b } \right)^2} \)\(= a – b + 2\sqrt {b\left( {a – b} \right)}  + b \)\(= a + 2\sqrt {b\left( {a – b} \right)} \) 

Rõ ràng  \(2\sqrt {b(a – b)}  > 0\) nên \({\left( {\sqrt {a – b}  + \sqrt b } \right)^2} > a\)   (1)

Ta có \(\sqrt a \) là số không âm và \({\left( {\sqrt a } \right)^2} = a\)  (2)

Từ (1) và (2) suy ra

\({\left( {\sqrt {a – b}  + \sqrt b } \right)^2} > {\left( {\sqrt a } \right)^2}\)      (3)

Từ (3) theo định lí so sánh các căn bậc hai số học, ta suy ra

\(\sqrt {{{\left( {\sqrt {a – b}  + \sqrt b } \right)}^2}}  > \sqrt {{{\left( {\sqrt a } \right)}^2}} \)

Hay \(\left| {\sqrt {a – b}  + \sqrt b } \right| > \left| {\sqrt a } \right|\)

Hay \(\sqrt {a – b}  + \sqrt b  > \sqrt a \)

Từ kết quả \(\sqrt a  < \sqrt {a – b}  + \sqrt b \), ta có \(\sqrt a  – \sqrt b  < \sqrt {a – b} \)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE