Bài 1 trang 64 SGK Toán 11 tập 1 – Cánh diều

Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với \({u_n} = 3 + \frac{1}{n};{v_n} = 5 – \frac{2}{{{n^2}}}.\) Tính các giới hạn sau: a) \(\lim {u_n},\lim {v_n}.\) b) \(\lim \left( {{u_n} + {v_n}} \right),\lim \left( {{u_n} – {v_n}} \right),\lim \left( {{u_n}.{v_n}} \right),\lim \frac{{{u_n}}}{{{v_n}}}.\)

Đề bài

Cho hai dãy số \(\left( {{u_n}} \right),\left( {{v_n}} \right)\) với \({u_n} = 3 + \frac{1}{n};{v_n} = 5 – \frac{2}{{{n^2}}}.\) Tính các giới hạn sau:

a) \(\lim {u_n},\lim {v_n}.\)

b) \(\lim \left( {{u_n} + {v_n}} \right),\lim \left( {{u_n} – {v_n}} \right),\lim \left( {{u_n}.{v_n}} \right),\lim \frac{{{u_n}}}{{{v_n}}}.\)

Phương pháp giải – Xem chi tiết

Sử dụng định lí về giới hạn hữu hạn kết hợp với một số giới hạn cơ bản.

Định nghĩa dãy số có giới hạn hữu hạn.

Dãy số \(\left( {{u_n}} \right)\)có giới hạn là số thực a khi n dần tới dương vô cực, nếu \(\mathop {\lim }\limits_{n \to  + \infty } \left( {{u_n} – a} \right) = 0\), kí hiệu \(\mathop {\lim }\limits_{n \to  + \infty } {u_n} = a\) hay \({u_n} \to a\) khi  \(n \to  + \infty \) hay \(\lim {u_n} = a\).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a) \(\begin{array}{l}\lim {u_n} = \lim \left( {3 + \frac{1}{n}} \right) = \lim 3 + \lim \frac{1}{n} = 3 + 0 = 3\\\lim {v_n} = \lim \left( {5 – \frac{2}{{{n^2}}}} \right) = \lim 5 – \lim \frac{2}{{{n^2}}} = 5 – 0 = 5\end{array}\)

b)

\(\begin{array}{l}\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n} = 3 + 5 = 8\\\lim \left( {{u_n} – {v_n}} \right) = \lim {u_n} – \lim {v_n} = 3 – 5 =  – 2\\\lim \left( {{u_n}.{v_n}} \right) = \lim {u_n}.\lim {v_n} = 3.5 = 15\\\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\lim {u_n}}}{{\lim {v_n}}} = \frac{3}{5}\end{array}\)

TẢI APP ĐỂ XEM OFFLINE