Câu 29 trang 159 SGK Đại số và Giải tích 11 Nâng cao

Cho hàm số

Đề bài

Cho hàm số

\(f\left( x \right) = \left\{ {\matrix{{2\left| x \right| – 1\,\text{ với }\,x \le – 2,} \cr {\sqrt {2{x^2} + 1} \,\text{ với }\,x > – 2.} \cr} } \right.\)

Tìm \(\mathop {\lim }\limits_{x \to {{\left( { – 2} \right)}^ – }} f\left( x \right),\mathop {\lim }\limits_{x \to {{\left( { – 2} \right)}^ + }} f\left( x \right)\) \(\text{ và }\,\mathop {\lim }\limits_{x \to – 2} f\left( x \right)\) (nếu có).

Phương pháp giải – Xem chi tiết

Tìm hàm số ứng với điều kiện của x, từ đó tính giới hạn.

Chú ý: 

\(x \to x_0^ + \) nghĩa là \(x \to x_0 \) và \(x > x_0 \).

\(x \to x_0^ – \) nghĩa là \(x \to x_0 \) và \(x < x_0 \).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Ta có:

\(\eqalign{
& \mathop {\lim }\limits_{x \to {{\left( { – 2} \right)}^ – }} f\left( x \right)= \mathop {\lim }\limits_{x \to {{\left( { – 2} \right)}^ – }} \left( {2\left| x \right| – 1} \right)  \cr &= 2\left| { – 2} \right| – 1 = 3 \cr 
& \mathop {\lim f(x)}\limits_{x \to {{\left( { – 2} \right)}^ + }} = \mathop {\lim  }\limits_{x \to {{\left( { – 2} \right)}^ + }} \sqrt {2{x^2} + 1} = 3 \cr & \text{Vì }\mathop {\lim }\limits_{x \to {{\left( { – 2} \right)}^ – }} f\left( x \right)=\mathop {\lim }\limits_{x \to {{\left( { – 2} \right)}^ + }} f\left( x \right)=3\cr &\Rightarrow \mathop {\lim }\limits_{x \to – 2} f\left( x \right) = 3. \cr} \)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

ĐẠI SỐ VÀ GIẢI TÍCH – TOÁN 11 NÂNG CAO