Câu 25 trang 152 SGK Đại số và Giải tích 11 Nâng cao

Tìm các giới hạn sau :

Lựa chọn câu để xem lời giải nhanh hơn

Tìm các giới hạn sau :

Vui lòng nhập mật khẩu để tiếp tục

test123

LG a

\(\mathop {\lim }\limits_{x \to – \infty } \root 3 \of {{{{x^2} + 2x} \over {8{x^2} – x + 3}}} \)

Phương pháp giải:

Chia cả tử và mẫu của phân thức cho lũy thừa bậc cao nhất của x.

Lời giải chi tiết:

Ta có:

\(\mathop {\lim }\limits_{x \to – \infty } \root 3 \of {{{{x^2} + 2x} \over {8{x^2} – x + 3}}} = \mathop {\lim }\limits_{x \to – \infty } \root 3 \of {{{1 + {2 \over x}} \over {8 – {1 \over x} + {3 \over {{x^2}}}}}} \) \( = \sqrt[3]{{\frac{{1 + 0}}{{8 – 0 + 0}}}}\) \(= {1 \over 2}\)

LG b

 \(\mathop {\lim }\limits_{x \to + \infty } {{x\sqrt x } \over {{x^2} – x + 2}}\)

Lời giải chi tiết:

\(\eqalign{
& \mathop {\lim }\limits_{x \to + \infty } {{x\sqrt x } \over {{x^2} – x + 2}} \cr &= \mathop {\lim }\limits_{x \to + \infty } {{x\sqrt x } \over {{x^2}\left( {1 – {1 \over x} + {2 \over {{x^2}}}} \right)}} \cr & = \mathop {\lim }\limits_{x \to  + \infty } \frac{{x\sqrt x }}{{x.{{\left( {\sqrt x } \right)}^2}\left( {1 – \frac{1}{x} + \frac{2}{{{x^2}}}} \right)}}\cr &= \mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt x \left( {1 – {1 \over x} + {2 \over {{x^2}}}} \right)}} \cr & = \mathop {\lim }\limits_{x \to  + \infty } \left( {\frac{1}{{\sqrt x }}.\frac{1}{{1 – \frac{1}{x} + \frac{2}{{{x^2}}}}}} \right)= 0 \cr 
& \text{vì}\;\mathop {\lim }\limits_{x \to + \infty } {1 \over {\sqrt x }} = 0\cr &\text{và}\;\mathop {\lim }\limits_{x \to + \infty } {1 \over {1 – {1 \over x} + {2 \over {{x^2}}}}} = 1 \cr} \)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

ĐẠI SỐ VÀ GIẢI TÍCH – TOÁN 11 NÂNG CAO