Giải bài 13 trang 121 SGK Toán 8 tập 1 – Cánh diều

Cho hình vuông ABCD

Đề bài

Cho hình vuông ABCD có M, N lần lượt là trung điểm của các cạnh BC, CD. Gọi O là giao điểm của AM và BN. Chứng minh:

a) \(\Delta ABM = \Delta BCN\)

b) \(\widehat {BAO} = \widehat {MBO}\)

c) \(AM \bot BN\)

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

a) Chứng minh \(\Delta ABM = \Delta BCN\) (hai cạnh góc vuông)

b) \(\widehat {BAO} = \widehat {MBO}\) (dựa vào \(\Delta ABM = \Delta BCN\))

c) Chứng minh tam giác OBM vuông tại O.

Vui lòng nhập mật khẩu để tiếp tục

test123

Lời giải chi tiết

a) Vì ANCD là hình vuông

suy ra: AB = BC = CD = DA

Gọi M là trung điểm của các cạnh BC, CD

Suy ra: BM = MC = CN = CD

Xét hai tam giác vuông ABM và BCN có:

AB = BC

BM = CN

\( \Rightarrow \Delta ABM = \Delta BCN\) (hai cạnh góc vuông)

b) theo câu a: \(\Delta ABM = \Delta BCN\)

\(\begin{array}{l} \Rightarrow \widehat {BAM} = \widehat {CBN}\\ \Rightarrow \widehat {BAO} = \widehat {MBO}\end{array}\)

c) Vì \(\Delta ABM = \Delta BCN\)

\(\begin{array}{l} \Rightarrow \widehat {MAB} = \widehat {NBM}\\ \Rightarrow \widehat {MAB} = \widehat {OBM}\end{array}\)

Mà: \(\widehat {MAB} + \widehat {OMB} = {90^o}\) (do tam giác ABM vuông tại M)

\( \Rightarrow \widehat {OBM} + \widehat {OMB} = {90^o}\)

Xét tam giác OBM có:

\(\begin{array}{l}\widehat {BOM} + \widehat {OBM} + \widehat {OMB} = {180^o}\\ \Rightarrow \widehat {BOM} + {90^o} = {180^o}\\ \Rightarrow \widehat {BOM} = {180^o} – {90^o} = {90^o}\end{array}\)

Suy ra: tam giác OBM vuông tại O

\(\begin{array}{l} \Rightarrow BO \bot OM\\ \Rightarrow BN \bot AM\end{array}\)

TẢI APP ĐỂ XEM OFFLINE