Lý thuyết Định lí cosin và định lí sin

1. Định lí cosin 2. Định lí sin

Vui lòng nhập mật khẩu để tiếp tục

test123

1.  Định lí cosin

Trong tam giác ABC:

\(\begin{array}{l}{a^2} = {b^2} + {c^2} – 2bc\cos A\\{b^2} = {c^2} + {a^2} – 2ca\cos B\\{c^2} = {a^2} + {b^2} – 2ab\cos C\end{array}\)          

Hệ quả

\(\cos A = \frac{{{b^2} + {c^2} – {a^2}}}{{2bc}};\cos B = \frac{{{a^2} + {c^2} – {b^2}}}{{2ac}};\cos C = \frac{{{a^2} + {b^2} – {c^2}}}{{2ab}}\)

 

2.  Định lí sin

Trong tam giác ABC: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} = \frac{c}{{\sin C}} = 2R.\)

(R là bán kính đường tròn ngoại tiếp tam giác ABC)

Hệ quả

\(a = 2R.\sin A;\quad b = 2R\sin B;\quad c = 2R\sin C\)

\(\sin A = \frac{a}{{2R}};\quad \sin B = \frac{b}{{2R}};\quad \sin C = \frac{c}{{2R}}.\)

 

3.  Các công thức tính diện tích tam giác

1) \(S = \frac{1}{2}a{h_a} = \frac{1}{2}b{h_b} = \frac{1}{2}c{h_c}\)

2) \(S = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B = \frac{1}{2}ab\sin C\)

3) \(S = \frac{{abc}}{{4R}}\)

4) \(S = pr = \frac{{(a + b + c).r}}{2}\)

5) \(S = \sqrt {p(p – a)(p – b)(p – c)} \) (Công thức Heron)

 

TẢI APP ĐỂ XEM OFFLINE

Toán 10 tập 1 – Chân trời sáng tạo