Giải bài 6.57 trang 22 sách bài tập toán 11 – Kết nối tri thức với cuộc sống

Cho hàm số \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) – \dot 2\).

Đề bài

Cho hàm số \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) – \dot 2\).

a) Tìm tập xác định của hàm số:

b) Tính\(f\left( {40} \right)\). Xác định điểm tương ứng trên đồ thị hàm số.

c) Tìm \(x\) sao cho \(f\left( x \right) = 3\). Xác định điểm tương ứng trên đồ thị hàm số.

d) Tìm giao điếm của đồ thị với trục hoành.

Phương pháp giải – Xem chi tiết

\(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) – 2\)

a) Điều kiện xác định của hàm số là \(2x + 1 > 0\).

b) Tính \(f\left( {40} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2 \cdot 40 + 1} \right) – 2\).

Điểm tương ứng trên đồ thị hàm số là \(\left( {40;f\left( {40} \right)} \right)\).

c)\(f\left( x \right) = 3 \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) – 2 = 3\).  Giải phương trình tìm \(x\)

Điềm tương ứng trên đồ thị hàm số là \(\left( {x;3} \right)\).

d) Gọi \(A\left( {{x_0};0} \right)\) là giao điểm của đồ thị hàm số \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) – 2\) với trục hoành. Khi đó \({\rm{lo}}{{\rm{g}}_3}\left( {2{x_0} + 1} \right) – 2 = 0\). Giải phương trình tìm được \({x_0}\)

Giao điểm cần tìm là \(\left( {{x_0};0} \right)\)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

\(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) – 2\)

a) Tập xác định của hàm số là \(\left( { – \frac{1}{2}; + \infty } \right)\).

b) \(f\left( {40} \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2 \cdot 40 + 1} \right) – 2 = 2\).

Điểm tương ứng trên đồ thị hàm số là \(\left( {40;2} \right)\).

c) \(f\left( x \right) = 3 \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) – 2 = 3 \Leftrightarrow {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) = 5 \Leftrightarrow 2x + 1 = {3^5} \Leftrightarrow x = 121\).

Điềm tương ứng trên đồ thị hàm số là \(\left( {121;3} \right)\).

d) Gọi \(A\left( {{x_0};0} \right)\) là giao điểm của đồ thị hàm số \(f\left( x \right) = {\rm{lo}}{{\rm{g}}_3}\left( {2x + 1} \right) – 2\) với trục hoành. Khi đó \({\rm{lo}}{{\rm{g}}_3}\left( {2{x_0} + 1} \right) – 2 = 0 \Leftrightarrow 2{x_0} + 1 = 9 \Leftrightarrow {x_0} = 4\).

Vậy giao điểm cần tìm là \(\left( {4;0} \right)\).

TẢI APP ĐỂ XEM OFFLINE