Giải bài 5 trang 82 SGK Toán 7 tập 2 – Chân trời sáng tạo

Cho tam giác AMN vuông tại A. Tia phân giác của góc M và N cắt nhau tại I. Tia MI cắt AN tại R. Kẻ RT vuông góc với AI tại T. Chứng minh rằng AT = RT.

Đề bài

Cho tam giác AMN vuông tại A. Tia phân giác của góc M và N cắt nhau tại I. Tia MI cắt AN tại R. Kẻ RT vuông góc với AI tại T. Chứng minh rằng AT = RT.

Phương pháp giải – Xem chi tiết

– Ta chứng minh AT = RT bằng cách chứng minh tam giác ATR cân tại T

– Để chứng minh tam giác ART cân tại T ta sử dụng tính chất 2 góc đáy trong tam giác bằng nhau

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Theo đề bài ta có tia phân giác của góc M, N cắt nhau tại I

\( \Rightarrow \) I là điểm giao của 3 phân giác trong tam giác AMN

\( \Rightarrow \) AI là phân giác của góc A

\( \Rightarrow \) \(\widehat {IAN} = \widehat {IAM} = {45^o}\)(góc A vuông)

Xét tam giác ATR có \(\widehat {IAN} = {45^o}\) và \(\widehat {ATR} = {90^o}\) theo định lí tổng 3 góc trong 1 tam giác

\( \Rightarrow \widehat {IAN} + \widehat {ATR} + \widehat {TRA} = {180^o} \Rightarrow \widehat {TRA} = {180^o} – {90^o} – {45^o} = {45^o}\)

\( \Rightarrow \Delta ATR \) vuông cân tại T ( tam giác có 2 góc ở đáy = 45 độ )

\( \Rightarrow AT = TR\)

TẢI APP ĐỂ XEM OFFLINE

Toán 7 tập 1 – Chân trời sáng tạo

Toán 7 tập 2 – Chân trời sáng tạo