Giải bài 5 trang 63 SGK Toán 10 tập 2 – Chân trời sáng tạo

a) Chứng tỏ rằng điểm M(4;6) thuộc đường tròn (C) b) Viết phương trình tiếp tuyến của (C) tại điểm M(4;6) c) Viết phương trình tiếp tuyến của (C) song song với đường thẳng 4x + 3y + 2022 = 0

Đề bài

Cho đường tròn \((C)\) có phương trình \({x^2} + {y^2} – 2x – 4y – 20 = 0\)

a) Chứng tỏ rằng điểm \(M(4;6)\) thuộc đường tròn \((C)\)

b) Viết phương trình tiếp tuyến của \((C)\) tại điểm \(M(4;6)\)

c) Viết phương trình tiếp tuyến của \((C)\)song song với đường thẳng \(4x + 3y + 2022 = 0\)

Phương pháp giải – Xem chi tiết

a) Thay tọa độ điểm M vào phương trình đường tròn

                +) Nếu biểu thức đó bằng 0 thì M thuộc đường tròn

                +) Nếu biểu thức khác 0 thì M không thuộc đường tròn

b) Phương trình tiếp tuyến của đường trong tâm \(I(a;b)\) tại điểm \(M({x_0};{y_0})\)nằm trên đường tròn là: \(\left( {a – {x_0}} \right)\left( {x – {x_0}} \right) + \left( {b – {y_0}} \right)\left( {y – {y_0}} \right) = 0\)

c)            Bước 1: Xác định pt tổng quát của tiếp tuyến (biết hai đường thẳng song song với nhau thì có cùng vt pháp tuyến)

                Bước 2: Xác định tiếp tuyến (biết khoảng cách từ tâm đến tiếp tuyến là bán kính)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

a) Thay điểm \(M(4;6)\)vào phương trình đường tròn \({x^2} + {y^2} – 2x – 4y – 20 = 0\)

ta có:

\({4^2} + {6^2} – 2.4 – 4.6 – 20 = 0\)

Suy ra, điểm M thuộc đường tròn (C)

b) Đường tròn có tâm \(I(1;2)\)

Phương trình tiếp tuyến d của (C) tại \(M(4;6)\) là:

\(\begin{array}{l}\left( {1 – 4} \right)\left( {x – 4} \right) + \left( {2 – 6} \right)\left( {y – 6} \right) = 0\\ \Leftrightarrow 3x + 4y -36 = 0\end{array}\)

c) Tiếp tuyến của đường tròn song song với đường thẳng \(4x + 3y + 2022 = 0\) nên phương trình có dạng \(d:4x + 3y + c = 0\)

Ta có tâm và bán kính của đường tròn là: \(I(1;2),r = \sqrt {{1^2} + {2^2} + 20}  = 5\)

Khoảng cách từ tâm đến tiếp tuyến là bán kính nên: \(d\left( {I,d} \right) = \frac{{\left| {4.1 + 3.2 + c} \right|}}{{\sqrt {{4^2} + {3^2}} }} = 5 \Rightarrow \left[ \begin{array}{l}c = 15\\c =  – 35\end{array} \right.\)

Vậy đường tròn (C) có hai tiếp tuyến song song với đường thẳng \(4x + 3y + 2022 = 0\) là \({d_1}:4x + 3y + 15 = 0,{d_2}:4x + 3y – 35 = 0\)

TẢI APP ĐỂ XEM OFFLINE

Toán 10 tập 1 – Chân trời sáng tạo