Đề kiểm tra 15 phút – Đề số 6 – Bài 7 – Chương 3 – Hình học 9

Giải Đề kiểm tra 15 phút – Đề số 6 – Bài 7 – Chương 3 – Hình học 9

Đề bài

Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Gọi M là điểm tùy ý trên đường thẳng AB, nằm ngoài đoạn AB. Vẽ qua M hai cát tuyến MCD và MC’D’ với (O) và (O’). Chứng minh tứ giác CDD’C’ nội tiếp.

Phương pháp giải – Xem chi tiết

Sử dụng tam giác đồng dạng, chứng minh tứ giác CDD’C’ có 1 góc trong bằng góc ngoài tại đỉnh đối diện

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Ta có tứ giác ABCD nội tiếp trong đường tròn (O) nên \(\widehat {CDA} = \widehat {CBM}\) ( cùng bù với \(\widehat {ABC}\)).

Do đó \(∆MBC\) đồng dạng \(∆MDA \) (g.g)

\( \Rightarrow \dfrac{{MA}}{{MC}} =\dfrac {{MD} }{ {MB}}\)

\( \Rightarrow  MA.MB = MC.MD\)

Chứng minh tương tự :

\(MA.MB = MC’.MD’\)

\( \Rightarrow  MC.MD = MC’.MD’\)

Do đó \(∆MCC’\) đồng dạng \(∆MD’D\) (g.g)   

\( \Rightarrow \widehat {MCC’} = \widehat {MD’D}\)

Vậy tứ giác CDD’C’ nội tiếp.

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE