Bài 6.10 trang 19 SGK Toán 11 tập 2 – Cùng khám phá

Tìm hàm số \(y = C.{a^x}\) mà đồ thị của nó được biểu diễn dưới đây:

Đề bài

Tìm hàm số \(y = C.{a^x}\) mà đồ thị của nó được biểu diễn dưới đây:

Phương pháp giải – Xem chi tiết

Đồ thị đi qua 2 điểm A(a; b), B (c; d). Thay tọa độ các điểm vào hàm số để tìm C, a.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

a) Đồ thị hàm số với a >1, đi qua 2 điểm (1; 6) và (3; 24). Ta có:

\(\left\{ \begin{array}{l}C.{a^1} = 6\\C.{a^3} = 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C.a = 6\\C.{a^3} = 24\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C.a = 6\\{a^2} = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}a = 2\\a =  – 2\,\left( {\rm{L}} \right)\end{array} \right.\\C.a = 6\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 2\\C = 3\end{array} \right.\)

Vậy hàm số cần tìm là \(y = {3.2^x}\).

b) Đồ thị hàm số với 0 < a < 1, đi qua 2 điểm \(\left( {2;\frac{2}{9}} \right)\) và \(\left( {0;2} \right)\). Ta có:

\(\left\{ \begin{array}{l}C.{a^2} = \frac{2}{9}\\C.{a^0} = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}C.{a^2} = \frac{2}{9}\\C = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a^2} = \frac{1}{9}\\C = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}a = \frac{1}{3}\\a =  – \frac{1}{3}\left( {\rm{L}} \right)\end{array} \right.\\C = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{3}\\C = 2\end{array} \right.\)

Vậy hàm số cần tìm là \(y = 2.{\left( {\frac{1}{3}} \right)^x}\)

TẢI APP ĐỂ XEM OFFLINE