Bài 43 trang 79 Vở bài tập toán 9 tập 2

Giải Bài 43 trang 79 VBT toán 9 tập 2. Giải các phương trình: a) 5x^2-3x+1=2x+11;…

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình:

LG a

\(5{x^2} – 3x + 1 = 2x + 11\)

Phương pháp giải:

Đưa phương trình đã cho về dạng: \(ax^2+bx+c=0\,(a \ne 0)\) Sau đó sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để tìm nghiệm.

Lời giải chi tiết:

\(5{x^2} – 3x + 1 = 2x + 11\)

\(\begin{array}{l} \Leftrightarrow 5{x^2} – 3x + 1 – 2x – 11 = 0\\ \Leftrightarrow 5{x^2} – 5x – 10 = 0\\ \Leftrightarrow {x^2} – x – 2 = 0\end{array}\)

Phương trình trên có \(a – b + c = 1 – \left( { – 1} \right) + \left( { – 2} \right) = 0\) nên có hai nghiệm \({x_1} =  – 1;{x_2} = 2.\) 

LG b

\(\dfrac{{{x^2}}}{5} – \dfrac{{2x}}{3} = \dfrac{{x + 5}}{6}\)

Phương pháp giải:

Đưa phương trình đã cho về dạng: \(ax^2+bx+c=0\,(a \ne 0)\) Sau đó sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để tìm nghiệm.

Lời giải chi tiết:

\(\dfrac{{{x^2}}}{5} – \dfrac{{2x}}{3} = \dfrac{{x + 5}}{6}\)

\( \Leftrightarrow 6{x^2} – 20x = 5\left( {x + 5} \right)\)

\( \Leftrightarrow 6{x^2} – 25x – 25 = 0\)

Xét \(\Delta  = {\left( { – 25} \right)^2} – 4.6.\left( { – 25} \right) = 1225 > 0\)\( \Rightarrow \sqrt \Delta   = 35\)

Nên phương trình có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{25 + 35}}{{2.6}} = 5\\x = \dfrac{{25 – 35}}{{2.6}} = \dfrac{{ – 5}}{6}\end{array} \right.\)

Vui lòng nhập mật khẩu để tiếp tục

test321

LG c

\(\dfrac{x}{{x – 2}} = \dfrac{{10 – 2x}}{{{x^2} – 2x}}\) 

Phương pháp giải:

Sử dụng cách giải phương trình chứa ẩn ở mẫu

Chú ý: Phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)  

Lời giải chi tiết:

Điều kiện: \(x \ne \left\{ {0;2} \right\}\)

Ta có \(\dfrac{x}{{x – 2}} = \dfrac{{10 – 2x}}{{{x^2} – 2x}}\)

\( \Leftrightarrow \dfrac{x}{{x – 2}} = \dfrac{{10 – 2x}}{{x\left( {x – 2} \right)}}\)

\(\begin{array}{l} \Leftrightarrow \dfrac{{{x^2}}}{{x\left( {x – 2} \right)}} = \dfrac{{10 – 2x}}{{x\left( {x – 2} \right)}}\\ \Rightarrow {x^2} = 10 – 2x\\ \Leftrightarrow {x^2} + 2x – 10 = 0\end{array}\)

Phương trình trên có \(\Delta ‘ = {1^2} – 1.\left( { – 10} \right) = 11 > 0\)  nên có hai nghiệm \(\left[ \begin{array}{l}x =  – 1 + \sqrt {11} \\x =  – 1 – \sqrt {11} \end{array} \right.\)  (thỏa mãn)

Vậy phương trình đã cho có hai nghiệm \(x =  – 1 + \sqrt {11} ;x =  – 1 – \sqrt {11} \) .

LG d

\(\dfrac{{x + 0,5}}{{3x + 1}} = \dfrac{{7x + 2}}{{9{x^2} – 1}}\)

Phương pháp giải:

Sử dụng cách giải phương trình chứa ẩn ở mẫu

Chú ý: Phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)  

Lời giải chi tiết:

Điều kiện: \(x \ne \left\{ { – \dfrac{1}{3};\dfrac{1}{3}} \right\}\)

\(\dfrac{{x + 0,5}}{{3x + 1}} = \dfrac{{7x + 2}}{{9{x^2} – 1}}\) \( \Leftrightarrow \dfrac{{\left( {x + 0,5} \right)\left( {3x – 1} \right)}}{{\left( {3x + 1} \right)\left( {3x – 1} \right)}} = \dfrac{{7x + 2}}{{\left( {3x – 1} \right)\left( {3x + 1} \right)}}\)

Khử mẫu và biến đổi, ta được

\(\begin{array}{l} \Rightarrow 3{x^2} – x + 1,5x – 0,5 = 7x + 2\\ \Leftrightarrow 3{x^2} – 6,5x – 2,5 = 0\\ \Leftrightarrow 6{x^2} – 13x – 5 = 0\end{array}\)

Phương trình trên có \(\Delta  = {\left( { – 13} \right)^2} – 4.6.\left( { – 5} \right) = 289 > 0\)\( \Rightarrow \sqrt \Delta   = 17\)  nên có hai nghiệm \({x_1} = \dfrac{{13 + 17}}{{2.6}} = \dfrac{5}{2};\) \({x_2} = \dfrac{{13 – 17}}{{2.6}} =  – \dfrac{1}{3}\)

\({x_2} =  – \dfrac{1}{3}\) không thỏa mãn điều kiện của ẩn

Vậy phương trình có một nghiệm \({x} = \dfrac{5}{2}.\)

LG e

\(2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\)

Phương pháp giải:

Đưa phương trình đã cho về dạng: \(ax^2+bx+c=0\,(a \ne 0)\) Sau đó sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để tìm nghiệm.

Lời giải chi tiết:

\(2\sqrt 3 {x^2} + x + 1 = \sqrt 3 \left( {x + 1} \right)\)

\(\begin{array}{l} \Leftrightarrow 2\sqrt 3 {x^2} + x + 1 – \sqrt 3 \left( {x + 1} \right) = 0\\ \Leftrightarrow 2\sqrt 3 {x^2} + x + 1 – \sqrt 3 x – \sqrt 3  = 0\\ \Leftrightarrow 2\sqrt 3 {x^2} + \left( {1 – \sqrt 3 } \right)x + 1 – \sqrt 3  = 0\end{array}\)

\(\Delta  = {\left( {1 – \sqrt 3 } \right)^2} – 4.2\sqrt 3 \left( {1 – \sqrt 3 } \right) \)\(= 4 – 2\sqrt 3  – 8\sqrt 3  + 24\)\( = 28 – 10\sqrt 3 \)\( = 25 – 2.5.\sqrt 3  + 3 \)\(= {\left( {5 – \sqrt 3 } \right)^2}\)\( \Rightarrow \sqrt \Delta   = 5 – \sqrt 3 \) 

\({x_1} = \dfrac{{\sqrt 3  – 1 + 5 – \sqrt 3 }}{{4\sqrt 3 }} \)\(= \dfrac{{\sqrt 3 }}{3};\)\({x_2} = \dfrac{{\sqrt 3  – 1 – 5 + \sqrt 3 }}{{4\sqrt 3 }} \)\(= \dfrac{{1 – \sqrt 3 }}{2}\)

LG f

\({x^2} + 2\sqrt 2 x + 4 = 3\left( {x + \sqrt 2 } \right)\)

Phương pháp giải:

Đưa phương trình đã cho về dạng: \(ax^2+bx+c=0\,(a \ne 0)\) Sau đó sử dụng công thức nghiệm hoặc công thức nghiệm thu gọn để tìm nghiệm.

Lời giải chi tiết:

\({x^2} + 2\sqrt 2 x + 4 = 3\left( {x + \sqrt 2 } \right)\)

\(\begin{array}{l} \Leftrightarrow {x^2} + 2\sqrt 2 x + 4 – 3\left( {x + \sqrt 2 } \right) = 0\\ \Leftrightarrow {x^2} + \left( {2\sqrt 2  – 3} \right)x + 4 – 3\sqrt 2  = 0\end{array}\)

Phương trình trên có \(\Delta  = {\left( {2\sqrt 2  – 3} \right)^2} – 4.1.\left( {4 – 3\sqrt 2 } \right) \)\(= 17 – 12\sqrt 2  – 16 + 12\sqrt 2  = 1 > 0\) nên phương trình có hai nghiệm \({x_1} = 2 – \sqrt 2 ;{x_2} = 1 – \sqrt 2 \)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE