Bài 27 trang 53 SGK Toán 9 tập 2

Dùng hệ thức Vi-ét để tính nhẩm các nghiệm của phương trình

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Vui lòng nhập mật khẩu để tiếp tục

test321

Dùng hệ thức Vi-ét để tính nhẩm các nghiệm của phương trình.

LG a

\({x^2}-{\rm{ }}7x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}0\)

Phương pháp giải:

Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  – \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Giải chi tiết:

\({x^2}-{\rm{ }}7x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}0\) có \(a = 1, b = -7, c = 12\)

Suy ra \(\Delta  = {\left( { – 7} \right)^2} – 4.1.12 = 1 > 0\)

Nên phương trình có 2 nghiệm \(x_1;x_2\), theo hệ thức Vi-et ta có:

\(\displaystyle{x_1} + {x_2} = {\rm{ }} – {{ – 7} \over 1} = 7 = 3 + 4\) 

\(\displaystyle{x_1}{x_2} = {\rm{ }}{{12} \over 1} = 12 = 3.4\)

Vậy \({x_1} = {\rm{ }}3,{\rm{ }}{x_2} = {\rm{ }}4\). 

LG b

\({x^2} + {\rm{ }}7x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}0\)

Phương pháp giải:

Nếu \({x_1},{x_2}\) là hai nghiệm của phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) thì

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  – \dfrac{b}{a}\\
{x_1}.{x_2} = \dfrac{c}{a}
\end{array} \right.\)

Giải chi tiết:

\({x^2} + {\rm{ }}7x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}0\) có \(a = 1, b = 7, c = 12\)

Suy ra \(\Delta  = 7^2 – 4.1.12 = 1 > 0\)

Nên phương trình có 2 nghiệm \(x_1;x_2\) , theo hệ thức Vi-et ta có:

\(\displaystyle{x_1} + {x_2} = {\rm{ }} – {7 \over 1} =  – 7 =  – 3 + ( – 4)\)

\(\displaystyle{x_1}{x_2} = {\rm{ }}{{12} \over 1} = 12 = ( – 3).( – 4)\)

Vậy \({x_1} = {\rm{ }} – 3,{\rm{ }}{x_2} = {\rm{ }} – 4\).

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE