Bài 10 trang 58 SGK Toán 11 tập 1 – Cánh diều

Cho cấp số nhân (left( {{u_n}} right)). Tìm số hạng đầu ({u_1}), công bội q trong mỗi trường hợp sau:

Đề bài

Cho cấp số nhân \(\left( {{u_n}} \right)\). Tìm số hạng đầu \({u_1}\), công bội q trong mỗi trường hợp sau:

a)    \({u_6} = 192\) và \({u_7} = 384\)

b)    \({u_1} + {u_2} + {u_3} = 7\) và \({u_5} – {u_2} = 14\)

Phương pháp giải – Xem chi tiết

Tìm số hạng đầu và công bội dựa vào công thức số hạng tổng quát của cấp số nhân.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

a) Ta có $u_6=u_1 \cdot q^5=192$ và $u_7=u_1 \cdot q^6=384$
Xét: $\frac{u_6}{u_7}=\frac{u_1 q^5}{u_1 \cdot q^6}=\frac{1}{q}=\frac{192}{384}=\frac{1}{2}$
Suy ra: $\mathrm{u}_1=192:\left(\frac{1}{2}\right)^5=6144$.
Vậy cấp số nhân có số hạng đầu $\mathrm{u}_1=6144$ và công bội $\mathrm{q}=\frac{1}{2}$.
b) Ta có: $u_1+u_2+u_3=u_1+u_1 \cdot q+u_1 \cdot q^2=7$
$\Leftrightarrow \mathrm{u}_1\left(1+\mathrm{q}+\mathrm{q}^2\right)=7$
Và $u_5-u_2=u_1 \cdot q^4-u_1 \cdot q=14$
$\Leftrightarrow \mathrm{u}_1 \mathrm{q}\left(\mathrm{q}^3-1\right)=14$
Suy ra: $\frac{u_1\left(1+q+q^2\right)}{u_1 q\left(q^3-1\right)}=\frac{7}{14}$
$\Leftrightarrow \frac{u_1\left(1+q+q^2\right)}{u_1 q(q-1)\left(1+q+q^2\right)}=\frac{7}{14} \\ \Leftrightarrow 2=q(q-1) \\ \Leftrightarrow q^2-q-2=0$

TẢI APP ĐỂ XEM OFFLINE