Giải bài 8 trang 102 sách bài tập toán 11 – Chân trời sáng tạo tập 2

Một nhóm học sinh gồm 4 bạn nữ và một số bạn nam. Chọn ra ngẫu nhiên 2 bạn từ nhóm. Biết rằng xác suất để 2 bạn được chọn đều là nam là \(\frac{1}{3}\). Tính xác suất của biến cố “Cả 2 bạn được chọn có cùng giới tính”.

Đề bài

Một nhóm học sinh gồm 4 bạn nữ và một số bạn nam. Chọn ra ngẫu nhiên 2 bạn từ nhóm. Biết rằng xác suất để 2 bạn được chọn đều là nam là \(\frac{1}{3}\). Tính xác suất của biến cố “Cả 2 bạn được chọn có cùng giới tính”.

Phương pháp giải – Xem chi tiết

Sử dụng kiến thức về tính xác suất của biến cố.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Gọi số bạn nam là n (bạn, n là số tự nhiên). Nhóm học sinh đó có \(n + 4\) (bạn)

Không gian mẫu “Chọn ra ngẫu nhiên 2 bạn từ nhóm”

Số phần tử của không gian mẫu là: \(C_{n + 4}^2\)

Số kết quả thuận lợi của biến cố “2 bạn được chọn đều là nam” là: \(C_n^2\)

Xác suất của biến cố “2 bạn được chọn đều là nam” là: \(\frac{{C_n^2}}{{C_{n + 4}^2}}\)

Vì xác suất để 2 bạn được chọn đều là nam là \(\frac{1}{3}\) nên ta có:

\(\frac{{C_n^2}}{{C_{n + 4}^2}} = \frac{1}{3} \Leftrightarrow \frac{{n!}}{{2!\left( {n – 2} \right)!}}:\frac{{\left( {n + 4} \right)!}}{{2!\left( {n + 4 – 2} \right)!}} = \frac{1}{3}\)

\( \Leftrightarrow \frac{{n\left( {n – 1} \right)}}{{\left( {n + 3} \right)\left( {n + 4} \right)}} = \frac{1}{3} \Leftrightarrow 3{n^2} – 3n = {n^2} + 7n + 12 \) \( \Leftrightarrow 2{n^2} – 10n – 12 = 0 \) \( \Leftrightarrow \left[ \begin{array}{l}n = 6\left( {TM} \right)\\n =  – 1\left( L \right)\end{array} \right.\)

Số kết quả thuận lợi của biến cố “Cả 2 bạn được chọn có cùng giới tính” là: \(C_4^2 + C_n^2\)

Xác suất của biến cố “Cả 2 bạn được chọn có cùng giới tính” là: \(\frac{{C_4^2 + C_n^2}}{{C_{n + 4}^2}} = \frac{{C_4^2 + C_6^2}}{{C_{10}^2}} = \frac{7}{{15}}\)

TẢI APP ĐỂ XEM OFFLINE