Giải bài 6 trang 17 vở thực hành Toán 8 tập 2

Rút gọn biểu thức \(P = \frac{3}{{\left( {x + 1} \right)\left( {x + 4} \right)}} – \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}} – \frac{1}{{\left( {x + 2} \right)\left( {x + 1} \right)}}\).

Đề bài

Rút gọn biểu thức \(P = \frac{3}{{\left( {x + 1} \right)\left( {x + 4} \right)}} – \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}} – \frac{1}{{\left( {x + 2} \right)\left( {x + 1} \right)}}\).

Phương pháp giải – Xem chi tiết

Rút gọn biểu thức \(P = \frac{3}{{\left( {x + 1} \right)\left( {x + 4} \right)}} – \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}} – \frac{1}{{\left( {x + 2} \right)\left( {x + 1} \right)}}\).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

\(\begin{array}{l}P = \frac{3}{{\left( {x + 1} \right)\left( {x + 4} \right)}} – \frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}} – \frac{1}{{\left( {x + 2} \right)\left( {x + 1} \right)}}\\ = \frac{3}{{\left( {x + 1} \right)\left( {x + 4} \right)}} – \left( {\frac{1}{{\left( {x + 2} \right)\left( {x + 3} \right)}} + \frac{1}{{\left( {x + 2} \right)\left( {x + 1} \right)}}} \right)\\ = \frac{3}{{\left( {x + 1} \right)\left( {x + 4} \right)}} – \frac{{x + 1 – (x + 3)}}{{(x + 1)(x + 3)}}\\ = \frac{3}{{\left( {x + 1} \right)\left( {x + 4} \right)}} – \frac{2}{{\left( {x + 1} \right)\left( {x + 3} \right)}}\\ = \frac{{3\left( {x + 3} \right)}}{{\left( {x + 1} \right)\left( {x + 3} \right)\left( {x + 4} \right)}} – \frac{{2\left( {x + 4} \right)}}{{\left( {x + 1} \right)\left( {x + 3} \right)\left( {x + 4} \right)}}\\ = \frac{{x + 1}}{{\left( {x + 1} \right)\left( {x + 3} \right)\left( {x + 4} \right)}} = \frac{1}{{\left( {x + 3} \right)\left( {x + 4} \right)}}\end{array}\)

TẢI APP ĐỂ XEM OFFLINE

Vở thực hành Toán 8 – Tập 1

Vở thực hành Toán 8 – Tập 2