Giải bài 5.32 trang 88 sách bài tập toán 11 – Kết nối tri thức với cuộc sống

Cho hàm số \(f(x)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 2\)

Đề bài

Cho hàm số \(f(x)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 2\) và \(\mathop {\lim }\limits_{x \to {1^ – }} f(x) = m + 1\). Biết giới hạn của \(f(x)\) khi \(x \to 1\) tồn tại. Giá trị của m

A. \(m = 1\)                                      

B. \(m = 2\)                   

C. \(m = 3\)                                      

D. Không tồn tại m.

Phương pháp giải – Xem chi tiết

Dựa vào lý thuyết \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ – } f\left( x \right) = L\) để tính ra m.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Đáp án A.

Giới hạn của \(f(x)\) khi \(x \to 1\) tồn tại khi và chỉ khi \(\mathop {\lim }\limits_{x \to 1_{}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ – }} f\left( x \right)\).

Nên \(2 = m + 1 \Rightarrow m = 1.\)

TẢI APP ĐỂ XEM OFFLINE