Giải bài 2 trang 115 SGK Toán 8 tập 1 – Cánh diều

Cho hình thoi ABCD có

Đề bài

Cho hình thoi ABCD có hai đường chéo AC và BD cắt nhau tại O. Chứng minh:

\(A{C^2} + B{{\rm{D}}^2} = 4\left( {O{A^2} + O{B^2}} \right) = 4{\rm{A}}{B^2}\)

Video hướng dẫn giải

Phương pháp giải – Xem chi tiết

Áp dụng định lí Pythagore trong các tam giác vuông để chứng minh.

 

Vui lòng nhập mật khẩu để tiếp tục

test123

Lời giải chi tiết

Xét \(\Delta OAB\) vuông tại A có: \(O{A^2} + O{B^2} = A{B^2}\)

Vì ABCD là hình thoi nên OA = OC; OB = OD

Ta có: \(\begin{array}{l}A{C^2} + B{D^2} = {(OA + OC)^2} + {(OB + OD)^2}\\ = {(OA + OA)^2} + {(OB + OB)^2}\\ = {(2OA)^2} + {(2OB)^2} = 4.O{A^2} + 4.O{B^2} = 4{(OA^2 + OB^2)} = 4.A{B^2}\end{array}\)

TẢI APP ĐỂ XEM OFFLINE