Câu 4.6 trang 177 sách bài tập Giải tích 12 Nâng cao

Gọi M, M’ theo thứ tự là các điểm của mặt phẳng phức biểu diễn số

Đề bài

Gọi M, M’ theo thứ tự là các điểm của mặt phẳng phức biểu diễn số \(z \ne 0\)  và \(z’ = {{1 + i} \over 2}z\). Chứng minh rằng tam giác OMM’ là tam giác vuông cân (O là gốc tọa độ)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Ta có \(\left| {\overline {OM} } \right| = \left| z \right|,\)

\(\eqalign{& \left| {\overline {OM’} } \right| = \left| {{{1 + i} \over 2}} \right|\left| z \right| = {{\sqrt 2 } \over 2}\left| z \right|  \cr & \left| {\overline {MM’} } \right| = \left| {\overline {OM’}  – \overline {OM} } \right| = \left| {{{ – 1 + i} \over 2}} \right|\left| z \right| = {{\sqrt 2 } \over 2}\left| z \right| \cr} \)

Do \(\left| z \right| \ne 0,\) suy ra tam giác OMM’ là tam giác vuông cân đỉnh M’ (h.4.5)

                                            

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

GIẢI TÍCH SBT – TOÁN 12 NÂNG CAO