Câu 3 trang 100 SGK Đại số và Giải tích 11 Nâng cao

Chứng minh rằng

Đề bài

Chứng minh rằng với mọi số nguyên dương \(n\), ta luôn có bất đẳng thức sau :

\(1 + {1 \over {\sqrt 2 }} + … + {1 \over {\sqrt n }} < 2\sqrt n \)

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

+) Với \(n = 1\) ta có \(1 < 2\sqrt 1 \) .

Vậy (1) đúng với \(n = 1\)

+) Giả sử (1) đúng với \(n = k\), tức là ta có :

\(1 + {1 \over {\sqrt 2 }} + … + {1 \over {\sqrt k }} < 2\sqrt k \)

+) Ta chứng minh (1) đúng với \(n = k + 1\), tức là phải chứng minh : 

\(1 + {1 \over {\sqrt 2 }} + … + {1 \over {\sqrt k }} + {1 \over {\sqrt {k + 1} }} < 2\sqrt {k + 1} \left( * \right)\)

Theo giả thiết qui nạp ta có :

\(1 + {1 \over {\sqrt 2 }} + … + {1 \over {\sqrt k }} + {1 \over {\sqrt {k + 1} }} < 2\sqrt k + {1 \over {\sqrt {k + 1} }}\)

Để chứng minh (*) ta cần chứng minh

\(2\sqrt k + {1 \over {\sqrt {k + 1} }} < 2\sqrt {k + 1} \)

Thật vậy ta có :

\(\eqalign{
& 2\sqrt k + {1 \over {\sqrt {k + 1} }} < 2\sqrt {k + 1} \cr 
& \Leftrightarrow 2\sqrt {k\left( {k + 1} \right)} + 1 < 2\left( {k + 1} \right) \cr 
& \Leftrightarrow 2\sqrt {k\left( {k + 1} \right)} < 2k + 1 \cr 
& \Leftrightarrow 4k\left( {k + 1} \right) < {\left( {2k + 1} \right)^2} \cr} \)

\( \Leftrightarrow 4{k^2} + 4k < 4{k^2} + 4k + 1\)

\(⇔ 0 < 1\) (luôn đúng)

Vậy ta có (*) luôn đúng  tức (1) đúng với \(n = k + 1\), do đó (1) đúng với mọi \(n \in \mathbb N^*\).

 Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

ĐẠI SỐ VÀ GIẢI TÍCH – TOÁN 11 NÂNG CAO