Bài 39 trang 57 SBT toán 9 tập 2

Giải bài 39 trang 57 sách bài tập toán 9. a) Chứng tỏ rằng phương trình 3.x^2 + 2x – 21 = 0 có một nghiệm là -3. Hãy tìm nghiệm kia.

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Chứng tỏ rằng phương trình \(3{x^2} + 2x – 21 = 0\) có một nghiệm là \(-3\). Hãy tìm nghiệm kia.

Phương pháp giải:

– Thay \(x=-3\) vào vế trái của phương trình đã cho, nếu cho kết quả bằng \(0\) thì \(x=-3\) là nghiệm của phương trình đã cho.

– Theo hệ thức Vi -ét ta có \({x_1}.{x_2} = \dfrac{c}{a}\), biết \(x_1=-3\) từ đó ta tính được \(x_2\).

Lời giải chi tiết:

Thay \(x = -3\) vào vế trái của phương trình ta được:

\(3.{\left( { – 3} \right)^2} + 2.\left( { – 3} \right) – 21 \)\(\,= 27 – 6 – 21 = 0\)

Vậy \(x = -3\) là nghiệm của phương trình \(3{x^2} + 2x – 21 = 0\).

Theo hệ thức Vi-ét ta có:

\(\displaystyle {x_1}{x_2} = {{ – 21} \over 3} \)

\(\displaystyle \Rightarrow  – 3.{x_2} = {{ – 21} \over 3} \Leftrightarrow {x_2} = {7 \over 3}\)

Vui lòng nhập mật khẩu để tiếp tục

test123

LG b

Chứng tỏ rằng phương trình \( – 4{x^2} – 3x + 115 = 0\) có một nghiệm là \(5\). Tìm nghiệm kia.

Phương pháp giải:

– Thay \(x=5\) vào vế trái của phương trình đã cho, nếu cho kết quả bằng \(0\) thì \(x=5\) là nghiệm của phương trình \( – 4{x^2} – 3x + 115 = 0\).

– Theo hệ thức Vi -ét ta có \({x_1}.{x_2} = \dfrac{c}{a}\), biết \(x_1=5\) từ đó ta tính được \(x_2\).

Lời giải chi tiết:

Thay \(x = 5\) vào vế trái của phương trình ta được:

\( – {4.5^2} – 3.5 + 115 \)\(\,=  – 100 – 15 + 115 = 0\)

Vậy \(x = 5\) là nghiệm của phương trình \( – 4{x^2} – 3x + 115 = 0\)

Theo hệ thức Vi-ét ta có:

\(\displaystyle {x_1}{x_2} = {{115} \over { – 4}}\)

\(\displaystyle \Rightarrow 5{x_2} =  – {{115} \over 4} \Leftrightarrow {x_2} =  – {{23} \over 4}\).

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE