Bài 33 trang 79 Vở bài tập toán 9 tập 1

Giải bài 33 trang 79 VBT toán 9 tập 1. a) Vẽ đồ thị các hàm số sau trên cùng một mặt phẳng tọa độ: y = 2x (1)

Đề bài

a) Vẽ đồ thị các hàm số sau trên cùng một mặt phẳng tọa độ:

y = 2x              (1)

y = 0,5x           (2)

y = -x + 6        (3)

b) Gọi các giao điểm của đường thẳng có phương trình (3) với hai đường thẳng có phương trình (1) và (2) theo thứ tự là A và B. Tìm tọa độ của hai điểm A và B.

c) Tính các góc của tam giác OAB.

Phương pháp giải – Xem chi tiết

a) Cách vẽ đường thẳng y = ax + b (trường hợp \(a \ne 0\) và \(b \ne 0\))

– Cho x = 0 thì y = b, được điểm P(0 ; b) thuộc trục tung Oy.

– Cho y = 0 thì \(x =  – \dfrac{b}{a}\), được điểm \(Q\left( { – \dfrac{b}{a};0} \right)\) thuộc trục hoành Ox.

– Vẽ đường thẳng đi qua hai điểm P và Q.

b) Tìm hoành độ giao điểm rồi thay vào một trong hai hàm số để tìm giá trị của tung độ giao điểm.

c)

–  Chứng minh tam giác đã cho là tam giác cân.

– Tìm độ lớn của góc ở đỉnh.

– Tìm độ lớn hai góc kề cạnh đáy.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

a) Vẽ đồ thị:

– Đường thẳng \(y = 2x\left( 1 \right)\) đi qua gốc tọa độ O và điểm \(C\left( {1;2} \right)\)

– Đường thẳng \(y = 0,5x{\rm{  }}\left( 2 \right)\)  đi qua gốc tọa độ O và điểm \(D\left( {1;0,5} \right)\)

– Đường thẳng \(y =  – x + 6{\rm{ (3)}}\) đi qua hai điểm : \(E\left( {0;6} \right)\) và điểm \(F\left( {6;0} \right)\)

 

b) Tìm tọa độ của điểm A :

\( – x + 6 = 2x \Leftrightarrow x = 2\)

Thay \(x = 2\) vào phương trình \(y = 2x\) ta có \(y = 2.2 = 4\)

Vậy ta có điểm \(A\left( {2;4} \right)\).

– Tìm tọa độ của điểm B :

\( – x + 6 = 0,5x \Leftrightarrow x = 4\)

Thay \(x = 4\) vào phương trình \(y = 0,5x\) ta có :

\(y = 0,5.4 = 2\)

Vậy ta có điểm \(B\left( {4;2} \right)\) 

c) Chứng minh: \(OA = OB\)

\(OA = \sqrt {{4^2} + {2^2}}  = \sqrt {20} \) ; \(OB = \sqrt {{4^2} + {2^2}}  = \sqrt {20} \)

Vậy \(OA = OB \Rightarrow \Delta OAB\) là tam giác cân \( \Rightarrow \widehat {OAB} = \widehat {OBA}\)

Tính góc \(\widehat {AOF}\) : \(\tan \widehat {AOF} = 2 \Rightarrow \widehat {AOF} \approx {63^o}26’\)

Tính góc \(\widehat {BOF}\) : \(\tan \widehat {BOF} = 0,5 \Rightarrow \widehat {BOF} \approx {26^o}34’\)

Vậy \(\widehat {AOB} = \widehat {AOF} – \widehat {BOF}\)\( \approx {63^o}26′ – {26^o}34′ = {36^o}52’\)

\(\widehat {OAB} = \widehat {OBA}\)\( \approx \dfrac{{{{180}^o} – {{36}^o}52′}}{2} = {71^o}34′.\)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE