Bài 2 trang 64 SGK Toán 11 tập 2 – Chân trời sáng tạo

Cho hình vuông (ABCD). Gọi (H,K) lần lượt là trung điểm của (AB,AD).

Đề bài

Cho hình vuông ABCD. Gọi H,K lần lượt là trung điểm của AB,AD. Trên đường thẳng vuông góc với (ABCD) tại H, lấy điểm S. Chứng minh rằng:

a) AC(SHK);

b) CK(SDH).

Phương pháp giải – Xem chi tiết

Cách chứng minh đường thẳng vuông góc với mặt phẳng: chứng minh đường thẳng đó vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

 

a) Ta có:

H là trung điểm của AB

K là trung điểm của AD

HK là đường trung bình của ΔABD

HKBD

ABCD là hình vuông ACBD

Ta có: {ACBDHK//BDACHK

Ta có: \left\{ \begin{array}{l}AC \bot HK – cmt\\AC \bot SH\,(Do\,SH \bot (ABCD))\\HK,SH \subset (SHK);HK \cap SH\end{array} \right. \Rightarrow AC \bot (SHK)

b) Gọi I = CK \cap DH.

Xét \Delta AH{\rm{D}}\Delta DKC có:

\left. \begin{array}{l}AH = DK\\\widehat {HA{\rm{D}}} = \widehat {K{\rm{D}}C}\\A{\rm{D}} = C{\rm{D}}\end{array} \right\} \Rightarrow \Delta AH{\rm{D}} = \Delta DKC\left( {c.g.c} \right) \Rightarrow \widehat {A{\rm{D}}H} = \widehat {DCK}

\widehat {DKC} + \widehat {DCK} = {90^ \circ }

\begin{array}{l} \Rightarrow \widehat {DKC} + \widehat {ADH} = {90^0} \Rightarrow \widehat {DKI} = {180^0} – (\widehat {DKC} + \widehat {ADH}) = {90^0}\\ \Rightarrow DH \bot CK\end{array}

Ta có: \left\{ \begin{array}{l}CK \bot DH – cmt\\CK \bot SH\,\,(Do\,SH \bot (ABCD))\\DH,SH \subset (SDH);DH \cap SH\end{array} \right. \Rightarrow CK \bot (SDH)

TẢI APP ĐỂ XEM OFFLINE