Giải bài 6 trang 60 sách bài tập toán 8 – Chân trời sáng tạo

Cho tam giác ABC cân tại A, có hai đường cao BE và CD \(\left( {D \in AB,E \in AC} \right)\). Chứng minh tứ giác BDEC là hình thang cân.

Đề bài

Cho tam giác ABC cân tại A, có hai đường cao BE và CD \(\left( {D \in AB,E \in AC} \right)\). Chứng minh tứ giác BDEC là hình thang cân.

Phương pháp giải – Xem chi tiết

Sử dụng kiến thức về dấu hiệu nhận biết hình thang cân để chứng minh: Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Vì tam giác ABC cân tại A nên \(AB = AC\) và \(\widehat {ABC} = \widehat {ACB}\)

Mà \(\widehat {ABC} + \widehat {ACB} + \widehat A = {180^0}\) nên \(\widehat {ABC} = \frac{{{{180}^0} – \widehat A}}{2}\) (1)

Tam giác AEB và tam giác ADC có:

\(\widehat {ADC} = \widehat {AEB} = {90^0},AB = AC,\widehat A\;chung\)

Do đó, \(\Delta AEB = \Delta ADC\left( {ch – gn} \right)\). Suy ra \(AD = AE\)

Do đó, tam giác AED cân tại E. Suy ra: \(\widehat {ADE} = \widehat {AED}\)

Mà \(\widehat {ADE} + \widehat {AED} + \widehat A = {180^0}\) nên \(\widehat {ADE} = \frac{{{{180}^0} – \widehat A}}{2}\) (2)

Từ (1) và (2) ta có: \(\widehat {ABC} = \widehat {ADE}\)

Mà hai góc này ở vị trí đồng vị nên DE//BC

Do đó, tứ giác BDEC là hình thang

Lại có: \(\widehat {DBC} = \widehat {ECB}\) (cmt) nên tứ giác BDEC là hình thang cân

TẢI APP ĐỂ XEM OFFLINE