Giải bài 31 trang 55 sách bài tập toán 11 – Cánh diều

Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân?

Đề bài

Trong các dãy số \(\left( {{u_n}} \right)\) với số hạng tổng quát sau, dãy số nào là cấp số nhân?

A. \({u_n} = {5^n}\)                                                     

B. \({u_n} = 1 + 5n\)

C. \({u_n} = {5^n} + 1\)                                               

D. \({u_n} = 5 + {n^2}\)

Phương pháp giải – Xem chi tiết

Dãy số \(\left( {{u_n}} \right)\) là cấp số nhân khi thương \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không đổi với mọi \(n \ge 1\) và \({u_n} \ne 0\).

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Nhận xét rằng trong mỗi dãy số đã cho, tất cả các số hạng đều khác 0.

a) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{5^{n + 1}}}}{{{5^n}}} = 5\). Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {5^n}\) là cấp số nhân.

b) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{1 + 5\left( {n + 1} \right)}}{{1 + 5n}} = \frac{{6 + 5n}}{{1 + 5n}}\)

Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 1 + 5n\) không là cấp số nhân.

c) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{1 + {5^{n + 1}}}}{{1 + {5^n}}}\). Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {5^n} + 1\) không là cấp số nhân.

d) Xét \(\frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{5 + {{\left( {n + 1} \right)}^2}}}{{5 + {n^2}}} = \frac{{{n^2} + 2n + 6}}{{{n^2} + 5}}\)

Do \(\frac{{{u_{n + 1}}}}{{{u_n}}}\) không là một hằng số, nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 5 + {n^2}\) không là cấp số nhân.

TẢI APP ĐỂ XEM OFFLINE