Giải bài 3.3 trang 32 sách bài tập toán 8 – Kết nối tri thức với cuộc sống

Chứng minh tổng độ dài hai đường chéo của tứ giác:

Đề bài

Chứng minh tổng độ dài hai đường chéo của tứ giác:

a) Bé hơn chu vi của tứ giác;

b) Lớn hơn tổng hai cạnh đối tùy ý của tứ giác, từ đó lớn hơn nửa chu vi của tứ giác.

Phương pháp giải – Xem chi tiết

Áp dụng định lý bất đẳng thức trong tam giác.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test123

Xét tứ giác ABCD. Chu vi tứ giác ABCD là \({P_{ABCD}}\; = AB + BC + CD + DA\).

a) Trong \(\Delta ABC\) có \(AC < AB + BC\) (bất đẳng thức trong tam giác)

Trong \(\Delta ACD\) có \(AC < CD + DA\) (bất đẳng thức trong tam giác)

Do đó \(AC + AC < AB + BC + \;CD + DA\) hay \(2AC < {P_{ABCD}}\;\) (1)

Tương tự, trong \(\Delta ABD\) có \(BD < AD + AB\)

Trong \(\Delta BCD\) có: \(BD < CD + BC\)

Do đó  \(BD + BD < AD + AB + CD + BC\) hay \(2BD < {P_{ABCD}}\). (2)

Từ (1) và (2) suy ra \(2\left( {AC + BD} \right) < 2{P_{ABCD}}\), do đó \(AC + BD < {P_{ABCD}}\).

b) Gọi O là giao điểm của AC và BD.

Trong \(\Delta OAB\) có \(OA + OB > AB\) (bất đẳng thức trong tam giác)

Trong \(\Delta OCD\) có \(OC + OD > CD\) (bất đẳng thức trong tam giác)

Nên \(AC + BD = OA + OC + OB + OD > AB + CD\).

Trong \(\Delta OAD\) có \(OA + OD > AD\) (bất đẳng thức trong tam giác)

Trong \(\Delta OBC\) có \(OB + OC > BC\) (bất đẳng thức trong tam giác)

Nên \(AC + BD = OA + OC + OB + OD > AD + BC\).

Vậy \(2\left( {AC + BD} \right) > AB + BC + CD + DA = {P_{ABCD}}\)

Tức là \(AC + BD\; > \frac{1}{2}{P_{ABCD}}\) (đpcm).

TẢI APP ĐỂ XEM OFFLINE

SBT TOÁN TẬP 2 – KẾT NỐI TRI THỨC VỚI CUỘC SỐNG