Bài 27 trang 9 SBT Hình học 12 Nâng cao

Giải bài 27 trang 9 sách bài tập Hình học 12 Nâng cao. Cho khối hộp …

Đề bài

Cho khối hộp \(ABCD.A’B’C’D’\)có đáy là hình chữ nhật với \(AB = \sqrt 3 \), \(AD = \sqrt 7 \). Hai mặt bên \(\left( {ABB’A’} \right)\) và \(\left( {ADD’A’} \right)\) lần lượt tạo với đáy những góc 450 và 600. Hãy tính thể tích khối hộp nếu biết cạnh bên bằng 1.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Kẻ \(\eqalign{  & A’H \bot \left( {ABCD} \right)\left( {H \in \left( {ABCD} \right)} \right),  \cr  & HM \bot AD\left( {M \in AD} \right),HK \bot AB\left( {K \in AB} \right). \cr} \)

Theo định lí ba đường vuông góc, ta có

\(AD \bot A’M,AB \bot A’K\)

\( \Rightarrow \widehat {A’MH} = {60^0},\;\widehat {A’KH} = {45^0}\) 

Đặt \(A’H = x\). Khi đó

\(A’H = x;\sin {60^0} = {{2 x } \over\sqrt 3}.\)

\(\eqalign{  & AM = \sqrt {A'{A^2} – A'{M^2}}\cr&  = \sqrt {{{3 – 4{x^2}} \over 3}}  = HK.   \cr} \)

Nhưng \(HK = x\cot {45^0} = x,\)

suy ra \(x = \sqrt {{{3 – 4{x^2}} \over 3}}  \Rightarrow x = \sqrt {{3 \over 7}.} \)

Vậy \({V_{ABCD.A’B’C’D’}} = AD.AB.x \)\(= \sqrt 7 .\sqrt 3 .\sqrt {{3 \over 7}}  = 3.\)

Sachgiaihay.com

TẢI APP ĐỂ XEM OFFLINE

GIẢI TÍCH SBT – TOÁN 12 NÂNG CAO