Giải bài 9.10 trang 60 sách bài tập toán 11 – Kết nối tri thức với cuộc sống

Cho hàm số \(f\left( x \right) = \frac{x}{{\sqrt {4 – {x^2}} }}\)

Đề bài

Cho hàm số \(f\left( x \right) = \frac{x}{{\sqrt {4 – {x^2}} }}\) và \(g\left( x \right) = \frac{1}{x} + \frac{1}{{\sqrt x }} + {x^2}\). Tính \(f’\left( 0 \right) – g’\left( 1 \right)\).

Phương pháp giải – Xem chi tiết

Dùng quy tắc tính đạo hàm \(f’\left( x \right),\,\,g’\left( x \right)\) và thay giá trị tương ứng.

Lời giải chi tiết

Vui lòng nhập mật khẩu để tiếp tục

test321

Dùng quy tắc tính đạo hàm \(f’\left( x \right),\,\,g’\left( x \right)\) và thay giá trị tương ứng.

 Ta có:

\(f’\left( x \right) = \frac{{\sqrt {4 – {x^2}}  + \frac{{{x^2}}}{{\sqrt {4 – {x^2}} }}}}{{{{\left( {\sqrt {4 – {x^2}} } \right)}^2}}} = \frac{4}{{\left( {4 – {x^2}} \right)\sqrt {4 – {x^2}} }}\)

\(g’\left( x \right) =  – \frac{1}{{{x^2}}} – \frac{1}{{2x\sqrt x }} + 2x\).

Do đó, \(f’\left( 0 \right) = \frac{1}{2},\,\,g’\left( 1 \right) = \frac{1}{2}\) và \(f’\left( 0 \right) – g’\left( 1 \right) = 0\).

TẢI APP ĐỂ XEM OFFLINE